Subgroup ($H$) information
Description: | $C_4^2:C_3$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(32\)\(\medspace = 2^{5} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16) \!\cdots\! \rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_4^2.\GL(2,\mathbb{Z}/4)$ |
Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2.(D_4\times S_4).C_2$ |
$\operatorname{Aut}(H)$ | $C_2^2.\GL(2,\mathbb{Z}/4)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2^2.\GL(2,\mathbb{Z}/4)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $C_2^2.\GL(2,\mathbb{Z}/4)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_4^2.\GL(2,\mathbb{Z}/4)$ |