Properties

Label 1536.408633532.1536.a1.a1
Order $ 1 $
Index $ 2^{9} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $C_4^2.\GL(2,\mathbb{Z}/4)$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_4^2.\GL(2,\mathbb{Z}/4)$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_4^2.(D_4\times S_4).C_2$
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(D_4\times S_4).C_2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_4^2.\GL(2,\mathbb{Z}/4)$
Normalizer:$C_4^2.\GL(2,\mathbb{Z}/4)$
Complements:$C_4^2.\GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_3$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$

Other information

Möbius function$0$
Projective image$C_4^2.\GL(2,\mathbb{Z}/4)$