Subgroup ($H$) information
Description: | $C_1$ |
Order: | $1$ |
Index: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Exponent: | $1$ |
Generators: | |
Nilpotency class: | $0$ |
Derived length: | $0$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), perfect, and rational.
Ambient group ($G$) information
Description: | $C_4^2.\GL(2,\mathbb{Z}/4)$ |
Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_4^2.\GL(2,\mathbb{Z}/4)$ |
Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $C_4^2.(D_4\times S_4).C_2$ |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $4$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2.(D_4\times S_4).C_2$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_4^2.\GL(2,\mathbb{Z}/4)$ | ||||||||||
Normalizer: | $C_4^2.\GL(2,\mathbb{Z}/4)$ | ||||||||||
Complements: | $C_4^2.\GL(2,\mathbb{Z}/4)$ | ||||||||||
Minimal over-subgroups: | $C_3$ | $C_2$ | $C_2$ | $C_2$ | $C_2$ | $C_2$ | $C_2$ | $C_2$ | $C_2$ | $C_2$ | $C_2$ |
Other information
Möbius function | $0$ |
Projective image | $C_4^2.\GL(2,\mathbb{Z}/4)$ |