Properties

Label 1536.408633532.768.f1.a1
Order $ 2 $
Index $ 2^{8} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(2\)
Generators: $\langle(3,4)(5,6)(9,11)(10,12)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_4^2.\GL(2,\mathbb{Z}/4)$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(D_4\times S_4).C_2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(256\)\(\medspace = 2^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3:D_4$
Normalizer:$C_2^3:D_4$
Normal closure:$C_4^2:C_2^2$
Core:$C_1$
Minimal over-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$24$
Möbius function$0$
Projective image$C_4^2.\GL(2,\mathbb{Z}/4)$