Properties

Label 1536.408633532.384.v1.b1
Order $ 2^{2} $
Index $ 2^{7} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(2\)
Generators: $\langle(3,4)(5,6)(9,11)(10,12)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23), (1,8)(2,7)(3,5)(4,6)(9,13)(10,14)(11,16)(12,15)(17,20)(18,19)(21,24)(22,23)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_4^2.\GL(2,\mathbb{Z}/4)$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(D_4\times S_4).C_2$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^5$
Normal closure:$D_4^2:C_2^2$
Core:$C_1$
Minimal over-subgroups:$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$
Maximal under-subgroups:$C_2$$C_2$$C_2$
Autjugate subgroups:1536.408633532.384.v1.a11536.408633532.384.v1.c11536.408633532.384.v1.d1

Other information

Number of subgroups in this conjugacy class$48$
Möbius function$0$
Projective image$C_4^2.\GL(2,\mathbb{Z}/4)$