Properties

Label 1536.408633532.16.h1.b1
Order $ 2^{5} \cdot 3 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_4^2.\GL(2,\mathbb{Z}/4)$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(D_4\times S_4).C_2$
$\operatorname{Aut}(H)$ $C_2^4.A_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4.A_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^4.A_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_2^4.A_4$
Normal closure:$C_2^5:(C_2\times A_4)$
Core:$C_4^2$
Minimal over-subgroups:$C_2^5:A_4$$C_2^4.A_4$
Maximal under-subgroups:$C_4^2:C_3$$C_4^2:C_2$$C_2\times A_4$
Autjugate subgroups:1536.408633532.16.h1.a1

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image$C_4^2.\GL(2,\mathbb{Z}/4)$