Properties

Label 1536.408633532.8.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:A_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,4,2,3)(5,7,6,8)(9,12,10,11)(13,16,14,15)(17,18)(19,20), (1,17,9)(2,18,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_4^2.\GL(2,\mathbb{Z}/4)$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.(D_4\times S_4).C_2$
$\operatorname{Aut}(H)$ $C_2^6.\POPlus(4,3)$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(6144\)\(\medspace = 2^{11} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_4^2.\GL(2,\mathbb{Z}/4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_4^2.\GL(2,\mathbb{Z}/4)$
Complements:$D_4$ $D_4$ $D_4$ $D_4$ $D_4$ $D_4$
Minimal over-subgroups:$(C_2\times C_4^2):A_4$$C_2^5:A_4$$C_4^2.S_4$
Maximal under-subgroups:$C_4^2:C_2^2$$C_2^2:A_4$$C_4^2:C_3$$C_4^2:C_3$$C_4^2:C_3$

Other information

Möbius function$0$
Projective image$C_4^2.\GL(2,\mathbb{Z}/4)$