Properties

Label 1344.4058.1.a1.a1
Order $ 2^{6} \cdot 3 \cdot 7 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_{12}).D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Index: $1$
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Generators: $a, c^{7}, d^{4}, d^{3}, d^{6}, c^{2}, b, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{12}).D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{42}\times D_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $(C_{42}\times D_4).C_6.C_2^5$
$W$$(C_2\times C_6):D_{28}$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2\times C_{12}).D_{28}$
Complements:$C_1$
Maximal under-subgroups:$C_{84}.D_4$$C_{84}.D_4$$C_{12}.D_{28}$$C_{12}.D_{28}$$C_{84}.C_2^3$$C_{84}.D_4$$C_{84}.D_4$$D_{28}.D_4$$C_{12}.(C_2\times D_4)$

Other information

Möbius function$1$
Projective image$(C_2\times C_6):D_{28}$