Properties

Label 1344.4058.2.e1.a1
Order $ 2^{5} \cdot 3 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{84}.D_4$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Index: \(2\)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Generators: $b, d^{6}, c^{2}, b^{2}, d^{3}, d^{4}, c^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{12}).D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{42}\times D_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $(C_3\times C_6\times D_4).C_2^5$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(14\)\(\medspace = 2 \cdot 7 \)
$W$$C_2^4:S_3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$(C_2\times C_{12}).D_{28}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$(C_2\times C_{12}).D_{28}$
Maximal under-subgroups:$Q_8\times C_{42}$$C_{12}.C_{28}$$C_{12}.C_{28}$$C_{28}.D_4$$C_{12}.D_4$

Other information

Möbius function$-1$
Projective image$(C_2\times C_6):D_{28}$