Properties

Label 1344.4058.3.a1.a1
Order $ 2^{6} \cdot 7 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{28}.D_4$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Index: \(3\)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, d^{6}, d^{3}, b^{2}, b, c^{2}, c^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{12}).D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{42}\times D_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $(C_{14}\times D_4).C_6.C_2^4$
$\card{\operatorname{res}(S)}$\(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2:D_{28}$, of order \(224\)\(\medspace = 2^{5} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{28}.D_4$
Normal closure:$(C_2\times C_{12}).D_{28}$
Core:$Q_8.D_{14}$
Minimal over-subgroups:$(C_2\times C_{12}).D_{28}$
Maximal under-subgroups:$Q_8.D_{14}$$D_{28}:C_4$$D_{28}:C_4$$C_4.D_{28}$$C_4.D_{28}$$C_{28}.D_4$$C_{28}.D_4$$D_4.D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$(C_2\times C_6):D_{28}$