Properties

Label 126000.a.50.a1.b1
Order $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 $
Index $ 2 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_7$
Order: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\left[ \left(\begin{array}{rrr} 13 & 1 & 21 \\ 4 & -1 & 8 \\ 0 & 20 & 8 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 16 & 13 & 14 \\ 9 & 19 & 1 \\ 6 & 6 & 14 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $0$

The subgroup is maximal, nonabelian, and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Ambient group ($G$) information

Description: $\PSU(3,5)$
Order: \(126000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(3,5)$, of order \(756000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$A_7$, of order \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$A_7$
Normal closure:$\PSU(3,5)$
Core:$C_1$
Minimal over-subgroups:$\PSU(3,5)$
Maximal under-subgroups:$A_6$$\PSL(2,7)$$\PSL(2,7)$$S_5$$C_3:S_4$
Autjugate subgroups:126000.a.50.a1.a1126000.a.50.a1.c1

Other information

Number of subgroups in this conjugacy class$50$
Möbius function$-1$
Projective image$\PSU(3,5)$