Properties

Label 126000.a.1750.b1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2 \cdot 5^{3} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(1750\)\(\medspace = 2 \cdot 5^{3} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left[ \left(\begin{array}{rrr} 2 & 7 & 0 \\ 4 & 6 & 11 \\ 6 & 20 & 10 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 0 & 7 & 10 \\ 5 & -1 & 19 \\ 22 & 9 & 8 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 11 & 3 & 4 \\ 0 & 15 & 14 \\ 23 & 4 & 22 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 16 & 23 & 18 \\ 5 & 11 & 11 \\ 14 & 3 & 13 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 6 & 23 & 20 \\ 14 & 8 & 11 \\ 14 & 14 & 22 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $\PSU(3,5)$
Order: \(126000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(3,5)$, of order \(756000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$W$$C_3:S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3:S_4$
Normal closure:$\PSU(3,5)$
Core:$C_1$
Minimal over-subgroups:$A_7$$A_7$$A_7$
Maximal under-subgroups:$C_3\times A_4$$C_3:D_4$$S_4$$S_4$$S_4$$C_3:S_3$

Other information

Number of subgroups in this conjugacy class$1750$
Möbius function$2$
Projective image$\PSU(3,5)$