Properties

Label 1152.157872.4.c1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6:S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(9,11,10), (1,4)(2,7)(3,5)(6,8), (12,14)(13,15), (1,2)(3,8)(4,7)(5,6)(10,11), (12,13)(14,15), (3,5,4)(6,8,7), (1,5)(2,8)(3,4)(6,7)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $(C_2^3\times C_6):S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_6).C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_3:S_3:S_4\times S_4$
$\card{\operatorname{res}(S)}$\(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_3:S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times C_6:S_4$
Normal closure:$(C_2^3\times C_6):S_4$
Core:$C_2^3\times C_6$
Minimal over-subgroups:$(C_2^3\times C_6):S_4$
Maximal under-subgroups:$C_6:S_4$$C_2^2:C_6^2$$C_2^3:D_6$$C_2^2\times S_4$$C_6:D_6$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-1$
Projective image$(C_2\times C_6):S_4$