Subgroup ($H$) information
Description: | $C_2\times C_6:S_4$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(9,11,10), (1,4)(2,7)(3,5)(6,8), (12,14)(13,15), (1,2)(3,8)(4,7)(5,6)(10,11), (12,13)(14,15), (3,5,4)(6,8,7), (1,5)(2,8)(3,4)(6,7)\rangle$
|
Derived length: | $3$ |
The subgroup is maximal, nonabelian, monomial (hence solvable), and rational.
Ambient group ($G$) information
Description: | $(C_2^3\times C_6):S_4$ |
Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^5\times C_6).C_3^4.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_3:S_3:S_4\times S_4$ |
$\card{\operatorname{res}(S)}$ | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $C_3:S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $12$ |
Number of conjugacy classes in this autjugacy class | $3$ |
Möbius function | $-1$ |
Projective image | $(C_2\times C_6):S_4$ |