Subgroup ($H$) information
Description: | $C_2^3\times C_6$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(9,11,10), (1,4)(2,7)(3,5)(6,8), (12,14)(13,15), (12,13)(14,15), (1,5)(2,8)(3,4)(6,7)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
Description: | $(C_2^3\times C_6):S_4$ |
Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $S_4$ |
Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2^5\times C_6).C_3^4.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2\times A_8$, of order \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \) |
$\operatorname{res}(S)$ | $S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $3$ |
Möbius function | $-12$ |
Projective image | $(C_2\times C_6):S_4$ |