Properties

Label 1080.260.90.a1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rrr} 0 & z_{2} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & z_{2} + 1 \end{array}\right), \left(\begin{array}{rrr} 0 & z_{2} + 1 & 1 \\ z_{2} & 0 & z_{2} \\ 1 & z_{2} + 1 & 1 \end{array}\right), \left(\begin{array}{rrr} z_{2} + 1 & 0 & 0 \\ 0 & z_{2} + 1 & 0 \\ 0 & 0 & z_{2} + 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3.A_6$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and quasisimple (hence nonsolvable and perfect).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_3\times D_4$
Normal closure:$C_3.A_6$
Core:$C_3$
Minimal over-subgroups:$\He_3:C_4$$C_3\times D_4$
Maximal under-subgroups:$C_6$$C_4$

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$2$
Projective image$A_6$