Properties

Label 1080.260.1.a1.a1
Order $ 2^{3} \cdot 3^{3} \cdot 5 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3.A_6$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Index: $1$
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrr} z_{2} & z_{2} & z_{2} \\ 0 & z_{2} + 1 & z_{2} + 1 \\ z_{2} & z_{2} + 1 & z_{2} \end{array}\right), \left(\begin{array}{rrr} 1 & 1 & z_{2} \\ z_{2} & z_{2} & z_{2} \\ z_{2} + 1 & z_{2} & 0 \end{array}\right), \left(\begin{array}{rrr} z_{2} + 1 & 0 & 0 \\ 0 & z_{2} + 1 & 0 \\ 0 & 0 & z_{2} + 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is the commutator subgroup (hence characteristic and normal), a direct factor, nonabelian, a $1080$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), and quasisimple (hence nonsolvable and perfect).

Ambient group ($G$) information

Description: $C_3.A_6$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$0$

The ambient group is nonabelian and quasisimple (hence nonsolvable and perfect).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), and perfect.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
$W$$A_6$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3.A_6$
Complements:$C_1$
Maximal under-subgroups:$\GL(2,4)$$\GL(2,4)$$\He_3:C_4$$C_3\times S_4$$C_3\times S_4$

Other information

Möbius function$1$
Projective image$A_6$