Properties

Label 10368.hn.16.b1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^4:C_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,3)(5,8)(11,14)(12,13), (1,5,8)(9,12,13)(10,11,14), (1,3)(2,5,7,8)(4,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^5:(C_3^4:C_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_3^2.C_4:\SD_{16}.C_2$
$\operatorname{Aut}(H)$ $C_3^4.C_8.C_2.A_6.C_2^2$
$W$$C_3^4:C_4$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_3^4:C_4$
Normal closure:$C_2^5:(C_3^4:C_4)$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_2^5:(C_3^4:C_4)$
Maximal under-subgroups:$C_3^3:D_6$$C_3^4:C_4$$C_2\times C_3^2:C_4$$C_2\times C_3^2:C_4$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$(C_3^2\times A_4^2):C_4$