Subgroup ($H$) information
Description: | $C_2\times C_3^2:C_4$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Index: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(1,2,8,7)(3,5)(4,6)(9,11,12,14)(10,13), (1,2,8,7)(3,5)(4,6)(9,10,12,11)(13,14)(15,16), (10,11,14), (1,8)(2,7)(11,14)(12,13), (9,12,13)(10,14,11)\rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_2^5:(C_3^4:C_4)$ |
Order: | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^4.C_3^2.C_4:\SD_{16}.C_2$ |
$\operatorname{Aut}(H)$ | $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$W$ | $C_3^2:C_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $72$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $2$ |
Projective image | $(C_3^2\times A_4^2):C_4$ |