Properties

Label 10368.hn.144.p1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^2:C_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2,8,7)(3,5)(4,6)(9,11,12,14)(10,13), (1,2,8,7)(3,5)(4,6)(9,10,12,11)(13,14)(15,16), (10,11,14), (1,8)(2,7)(11,14)(12,13), (9,12,13)(10,14,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^5:(C_3^4:C_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_3^2.C_4:\SD_{16}.C_2$
$\operatorname{Aut}(H)$ $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$C_3^2:C_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:C_4$
Normal closure:$C_2^5:(C_3^4:C_4)$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_2\times C_3^4:C_4$$C_6^2:C_4$
Maximal under-subgroups:$C_6:S_3$$C_3^2:C_4$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$(C_3^2\times A_4^2):C_4$