Properties

Label 10368.hn.576.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{6} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,11,14), (10,11,14)(15,16), (9,12,13)(10,14,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2^5:(C_3^4:C_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $A_4^2:C_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $S_4\wr C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_3^2.C_4:\SD_{16}.C_2$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^4.C_3^4.C_2$
Normalizer:$C_2^5:(C_3^4:C_4)$
Complements:$A_4^2:C_4$
Minimal over-subgroups:$C_3^2\times C_6$$C_3^2\times C_6$$C_6^2$$C_6^2$$C_6:S_3$
Maximal under-subgroups:$C_3^2$$C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_3^2\times A_4^2):C_4$