Properties

Label 10368.ca.24.bm1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(2,8,3)(4,6,9)(11,15)(13,14), (12,16)(13,14), (1,5,7)(2,8,3)(4,9,6), (2,3,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times C_6^3):S_4$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 24T9971.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2^3\times S_4)$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_6^2.D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$W$$C_3^2.S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2.S_4$
Normal closure:$(C_2\times C_6^3):S_4$
Core:$C_1$
Minimal over-subgroups:$C_6^3:S_3$$C_6^2.S_4$
Maximal under-subgroups:$C_6^2.C_6$$C_3^2.S_4$$C_3^2.S_4$$C_6^2:C_2^2$$C_2^2:D_{18}$$C_{18}:C_6$

Other information

Number of subgroups in this autjugacy class$96$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$0$
Projective image$(C_2\times C_6^3):S_4$