Show commands: Magma
Group invariants
Abstract group: | $(C_2\times C_6^3):S_4$ |
| |
Order: | $10368=2^{7} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $9971$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,24,7,16,6,19,12,18,3,21,10,13)(2,23,8,15,5,20,11,17,4,22,9,14)$, $(1,11,19,3,8,21,6,9,24)(2,12,20,4,7,22,5,10,23)(13,14)(15,16)(17,18)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ $48$: $S_4\times C_2$ $192$: $V_4^2:(S_3\times C_2)$ $384$: $C_2 \wr S_4$ $648$: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ $1296$: 18T301 $5184$: 36T5805 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: $S_4$
Degree 6: None
Degree 8: $C_2 \wr S_4$
Degree 12: 12T177
Low degree siblings
24T9971 x 7, 24T9972 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
69 x 69 character table
Regular extensions
Data not computed