Subgroup ($H$) information
Description: | $C_2^2:D_{18}$ |
Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\langle(2,6)(3,4)(5,7)(8,9)(10,17)(11,15)(12,13)(14,16), (12,16)(13,14), (1,5,7) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $(C_2\times C_6^3):S_4$ |
Order: | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^3.(C_2^3\times S_4)$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $C_6^2.D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
$W$ | $C_3^2.S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $96$ |
Number of conjugacy classes in this autjugacy class | $8$ |
Möbius function | $0$ |
Projective image | $(C_2\times C_6^3):S_4$ |