Properties

Label 10368.ca.12.h1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.S_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(10,17)(11,15)(12,16)(13,14), (2,8,3)(4,6,9)(11,15)(13,14), (12,16)(13,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2\times C_6^3):S_4$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2^3\times S_4)$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_3^2.S_4\times S_4$
$W$$C_3^2.S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2.S_4$
Normal closure:$(C_2\times C_6^3):S_4$
Core:$C_2^4$
Minimal over-subgroups:$C_6^3:D_6$
Maximal under-subgroups:$C_6^2.A_4$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_6^2:D_4$$C_2^3:D_{18}$$D_{18}:C_6$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_6^3:S_4$