Subgroup ($H$) information
Description: | $C_6^2.A_4$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Generators: |
$\langle(10,17)(11,15)(12,16)(13,14), (2,8,3)(4,6,9)(11,15)(13,14), (12,16)(13,14) \!\cdots\! \rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), and metabelian.
Ambient group ($G$) information
Description: | $(C_2\times C_6^3):S_4$ |
Order: | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^3.(C_2^3\times S_4)$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $C_6^2.C_3^3.C_2^2$ |
$W$ | $C_3^2:S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $8$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_6^3:S_4$ |