Properties

Label 1000.178.40.b1.a1
Order $ 5^{2} $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(5\)
Generators: $b^{2}, d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_5^2:C_{10}$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times F_5\wr C_2$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_4^2$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(50\)\(\medspace = 2 \cdot 5^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$D_5\times C_5^2$
Normalizer:$C_5\times D_5^2$
Normal closure:$C_5^3$
Core:$C_5$
Minimal over-subgroups:$C_5^3$$C_5\times C_{10}$$C_5\times D_5$$C_5\times D_5$
Maximal under-subgroups:$C_5$$C_5$$C_5$$C_5$
Autjugate subgroups:1000.178.40.b1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_5\wr C_2$