Properties

Label 1000.178.200.c1.b1
Order $ 5 $
Index $ 2^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(5\)
Generators: $b^{2}d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_5^2:C_{10}$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times F_5\wr C_2$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(50\)\(\medspace = 2 \cdot 5^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_5\times C_5^2$
Normalizer:$D_5\times C_5^2$
Normal closure:$C_5^3$
Core:$C_1$
Minimal over-subgroups:$C_5^2$$C_5^2$$C_5^2$$C_5^2$$C_{10}$
Maximal under-subgroups:$C_1$
Autjugate subgroups:1000.178.200.c1.a11000.178.200.c1.c11000.178.200.c1.d1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$D_5^2:C_{10}$