Properties

Label 1000.178.200.a1.a1
Order $ 5 $
Index $ 2^{3} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(5\)
Generators: $b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_5^2:C_{10}$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $D_5\wr C_2$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $F_5\wr C_2$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times F_5\wr C_2$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_5^2:C_{10}$
Normalizer:$D_5^2:C_{10}$
Complements:$D_5\wr C_2$
Minimal over-subgroups:$C_5^2$$C_5^2$$C_5^2$$C_{10}$$C_{10}$$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$D_5\wr C_2$