Label |
Degree |
Type |
Faithful |
Conductor |
Field of Traces |
$\Q$-character |
Group |
Image |
Image Order |
Kernel |
Kernel Order |
Center |
Center Order |
Center Index |
Schur Index |
3072.cc.1a |
$1$ |
R |
|
$1$ |
\(\Q\) |
3072.cc.1a |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_1$ |
$1$ |
1.a1.a1 |
$3072$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1b |
$1$ |
R |
|
$1$ |
\(\Q\) |
3072.cc.1b |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_2$ |
$2$ |
2.b1.a1 |
$1536$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1c |
$1$ |
R |
|
$1$ |
\(\Q\) |
3072.cc.1c |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_2$ |
$2$ |
2.b1.b1 |
$1536$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1d |
$1$ |
R |
|
$1$ |
\(\Q\) |
3072.cc.1d |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_2$ |
$2$ |
2.a1.a1 |
$1536$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1e1 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1e |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.d1.b1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1e2 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1e |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.d1.b1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1f1 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1f |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.d1.a1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1f2 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1f |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.d1.a1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1g1 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1g |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.d1.c1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1g2 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1g |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.d1.c1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1h1 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1h |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.d1.d1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1h2 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1h |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.d1.d1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1i1 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1i |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.c1.a1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1i2 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1i |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.c1.a1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1j1 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1j |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.b1.a1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1j2 |
$1$ |
C |
|
$4$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.1j |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_4$ |
$4$ |
4.b1.a1 |
$768$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1k1 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1k |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.g1.a1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1k2 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1k |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.g1.a1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1k3 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1k |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.g1.a1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1k4 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1k |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.g1.a1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1l1 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1l |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.g1.b1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1l2 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1l |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.g1.b1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1l3 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1l |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.g1.b1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1l4 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1l |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.g1.b1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1m1 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1m |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.d1.b1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1m2 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1m |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.d1.b1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1m3 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1m |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.d1.b1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1m4 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1m |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.d1.b1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1n1 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1n |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.d1.a1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1n2 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1n |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.d1.a1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1n3 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1n |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.d1.a1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.1n4 |
$1$ |
C |
|
$8$ |
\(\Q(\zeta_{8})\) |
3072.cc.1n |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_8$ |
$8$ |
8.d1.a1 |
$384$ |
1.a1.a1 |
$3072$ |
$1$ |
$1$ |
3072.cc.2a |
$2$ |
R |
|
$1$ |
\(\Q\) |
3072.cc.2a |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$S_3$ |
$6$ |
6.a1.a1 |
$512$ |
6.a1.a1 |
$512$ |
$6$ |
$1$ |
3072.cc.2aa1 |
$2$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.2aa |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_3:\OD_{16}$ |
$48$ |
48.n1.a1 |
$64$ |
12.a1.a1 |
$256$ |
$12$ |
$1$ |
3072.cc.2aa2 |
$2$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.2aa |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_3:\OD_{16}$ |
$48$ |
48.n1.a1 |
$64$ |
12.a1.a1 |
$256$ |
$12$ |
$1$ |
3072.cc.2aa3 |
$2$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.2aa |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_3:\OD_{16}$ |
$48$ |
48.n1.a1 |
$64$ |
12.a1.a1 |
$256$ |
$12$ |
$1$ |
3072.cc.2aa4 |
$2$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.2aa |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_3:\OD_{16}$ |
$48$ |
48.n1.a1 |
$64$ |
12.a1.a1 |
$256$ |
$12$ |
$1$ |
3072.cc.2ab1 |
$2$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.2ab |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_3:\OD_{16}$ |
$48$ |
48.h1.a1 |
$64$ |
12.a1.a1 |
$256$ |
$12$ |
$1$ |
3072.cc.2ab2 |
$2$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.2ab |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_3:\OD_{16}$ |
$48$ |
48.h1.a1 |
$64$ |
12.a1.a1 |
$256$ |
$12$ |
$1$ |
3072.cc.2ab3 |
$2$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.2ab |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_3:\OD_{16}$ |
$48$ |
48.h1.a1 |
$64$ |
12.a1.a1 |
$256$ |
$12$ |
$1$ |
3072.cc.2ab4 |
$2$ |
C |
|
$12$ |
\(\Q(\sqrt{-1}) \) |
3072.cc.2ab |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_3:\OD_{16}$ |
$48$ |
48.h1.a1 |
$64$ |
12.a1.a1 |
$256$ |
$12$ |
$1$ |
3072.cc.2ac1 |
$2$ |
R |
|
$24$ |
\(\Q(\sqrt{2}, \sqrt{3})\) |
3072.cc.2ac |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$D_{24}$ |
$48$ |
48.e1.a1 |
$64$ |
24.b1.a1 |
$128$ |
$24$ |
$1$ |
3072.cc.2ac2 |
$2$ |
R |
|
$24$ |
\(\Q(\sqrt{2}, \sqrt{3})\) |
3072.cc.2ac |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$D_{24}$ |
$48$ |
48.e1.a1 |
$64$ |
24.b1.a1 |
$128$ |
$24$ |
$1$ |
3072.cc.2ac3 |
$2$ |
R |
|
$24$ |
\(\Q(\sqrt{2}, \sqrt{3})\) |
3072.cc.2ac |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$D_{24}$ |
$48$ |
48.e1.a1 |
$64$ |
24.b1.a1 |
$128$ |
$24$ |
$1$ |
3072.cc.2ac4 |
$2$ |
R |
|
$24$ |
\(\Q(\sqrt{2}, \sqrt{3})\) |
3072.cc.2ac |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$D_{24}$ |
$48$ |
48.e1.a1 |
$64$ |
24.b1.a1 |
$128$ |
$24$ |
$1$ |
3072.cc.2ad1 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{3})\) |
3072.cc.2ad |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_{24}:C_2$ |
$48$ |
48.m1.b1 |
$64$ |
24.b1.a1 |
$128$ |
$24$ |
$1$ |
3072.cc.2ad2 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{3})\) |
3072.cc.2ad |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_{24}:C_2$ |
$48$ |
48.m1.b1 |
$64$ |
24.b1.a1 |
$128$ |
$24$ |
$1$ |
3072.cc.2ad3 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{3})\) |
3072.cc.2ad |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_{24}:C_2$ |
$48$ |
48.m1.b1 |
$64$ |
24.b1.a1 |
$128$ |
$24$ |
$1$ |
3072.cc.2ad4 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{3})\) |
3072.cc.2ad |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_{24}:C_2$ |
$48$ |
48.m1.b1 |
$64$ |
24.b1.a1 |
$128$ |
$24$ |
$1$ |
3072.cc.2ae1 |
$2$ |
C |
|
$24$ |
\(\Q(\sqrt{-2}, \sqrt{3})\) |
3072.cc.2ae |
$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$ |
$C_{24}:C_2$ |
$48$ |
48.m1.a1 |
$64$ |
24.b1.a1 |
$128$ |
$24$ |
$1$ |