Properties

Label 3072.cc.4.d1.d1
Order $ 2^{8} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_4\times C_8).S_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 2 & 1 \\ 31 & 14 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 27 & 24 \\ 8 & 19 \end{array}\right), \left(\begin{array}{rr} 9 & 16 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 12 & 27 \\ 25 & 19 \end{array}\right), \left(\begin{array}{rr} 3 & 16 \\ 16 & 3 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Order: \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times A_4).C_2^5.C_2^6$
$\operatorname{Aut}(H)$ $(C_4\times A_4).C_2^6$
$\card{W}$\(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_4\times C_8).\GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_2\times A_4.\OD_{32}.C_2$
Maximal under-subgroups:$C_4\times C_8\times A_4$$A_4:\OD_{32}$$C_4^2.\OD_{16}$$C_{24}.C_8$
Autjugate subgroups:3072.cc.4.d1.a13072.cc.4.d1.b13072.cc.4.d1.c1

Other information

Möbius function not computed
Projective image not computed