Refine search
Label | Subgroup | Ambient | Quotient | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Order | Sylow | norm | char | max | cent | ab | Name | Order | Name | Size | max | ab | |||
4032.fk.1.a1.a1 | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_1$ | $1$ | ✓ | |||||||
4032.fk.2.a1.a1 | $C_2\times S_4\times F_7$ | $2^{5} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2$ | $2$ | ✓ | |||||||
4032.fk.2.a1.b1 | $C_2\times S_4\times F_7$ | $2^{5} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2$ | $2$ | ✓ | |||||||
4032.fk.2.b1.a1 | $(C_{14}\times S_4):C_6$ | $2^{5} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2$ | $2$ | ✓ | |||||||
4032.fk.2.b1.b1 | $(C_{14}\times S_4):C_6$ | $2^{5} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2$ | $2$ | ✓ | |||||||
4032.fk.2.c1.a1 | $C_{28}:(C_3\times S_4)$ | $2^{5} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2$ | $2$ | ✓ | ||||||
4032.fk.2.d1.a1 | $A_4\times C_{28}:C_6$ | $2^{5} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2$ | $2$ | ✓ | ||||||
4032.fk.2.e1.a1 | $C_4\times A_4:F_7$ | $2^{5} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2$ | $2$ | ✓ | ||||||
4032.fk.3.a1.a1 | $D_{28}:S_4$ | $2^{6} \cdot 3 \cdot 7$ | ✓ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_3$ | $3$ | ✓ | ||||||
4032.fk.3.b1.a1 | $C_{28}:(C_6\times D_4)$ | $2^{6} \cdot 3 \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $3$ | $-$ | |||||||||
4032.fk.4.a1.a1 | $C_7:C_6\times S_4$ | $2^{4} \cdot 3^{2} \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2^2$ | $2^{2}$ | ✓ | ||||||||
4032.fk.4.a1.b1 | $C_7:C_6\times S_4$ | $2^{4} \cdot 3^{2} \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2^2$ | $2^{2}$ | ✓ | ||||||||
4032.fk.4.b1.a1 | $C_2\times A_4\times F_7$ | $2^{4} \cdot 3^{2} \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2^2$ | $2^{2}$ | ✓ | ||||||||
4032.fk.4.b1.b1 | $C_2\times A_4\times F_7$ | $2^{4} \cdot 3^{2} \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2^2$ | $2^{2}$ | ✓ | ||||||||
4032.fk.4.c1.a1 | $C_2\times A_4:F_7$ | $2^{4} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2^2$ | $2^{2}$ | ✓ | |||||||
4032.fk.4.d1.a1 | $C_7:C_{12}\times A_4$ | $2^{4} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2^2$ | $2^{2}$ | ✓ | |||||||
4032.fk.4.e1.a1 | $(C_7\times A_4):C_{12}$ | $2^{4} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2^2$ | $2^{2}$ | ✓ | |||||||
4032.fk.4.f1.a1 | $D_{12}:F_7$ | $2^{4} \cdot 3^{2} \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2^{2}$ | $-$ | |||||||||
4032.fk.4.g1.a1 | $S_4\times F_7$ | $2^{4} \cdot 3^{2} \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2^{2}$ | $-$ | ||||||||||
4032.fk.4.g1.b1 | $S_4\times F_7$ | $2^{4} \cdot 3^{2} \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2^{2}$ | $-$ | ||||||||||
4032.fk.4.g1.c1 | $S_4\times F_7$ | $2^{4} \cdot 3^{2} \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2^{2}$ | $-$ | ||||||||||
4032.fk.4.g1.d1 | $S_4\times F_7$ | $2^{4} \cdot 3^{2} \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2^{2}$ | $-$ | ||||||||||
4032.fk.6.a1.a1 | $S_4\times D_{14}$ | $2^{5} \cdot 3 \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_6$ | $2 \cdot 3$ | ✓ | ||||||||
4032.fk.6.a1.b1 | $S_4\times D_{14}$ | $2^{5} \cdot 3 \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_6$ | $2 \cdot 3$ | ✓ | ||||||||
4032.fk.6.b1.a1 | $C_7:\GL(2,\mathbb{Z}/4)$ | $2^{5} \cdot 3 \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_6$ | $2 \cdot 3$ | ✓ | ||||||||
4032.fk.6.b1.b1 | $C_7:\GL(2,\mathbb{Z}/4)$ | $2^{5} \cdot 3 \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_6$ | $2 \cdot 3$ | ✓ | ||||||||
4032.fk.6.c1.a1 | $C_{28}:S_4$ | $2^{5} \cdot 3 \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_6$ | $2 \cdot 3$ | ✓ | |||||||
4032.fk.6.d1.a1 | $C_2\times D_{28}:C_6$ | $2^{5} \cdot 3 \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $S_3$ | $2 \cdot 3$ | ||||||||
4032.fk.6.e1.a1 | $A_4\times D_{28}$ | $2^{5} \cdot 3 \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_6$ | $2 \cdot 3$ | ✓ | |||||||
4032.fk.6.f1.a1 | $C_{28}:S_4$ | $2^{5} \cdot 3 \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_6$ | $2 \cdot 3$ | ✓ | |||||||
4032.fk.6.g1.a1 | $(C_2\times D_{28}):C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.g1.b1 | $(C_2\times D_{28}):C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.h1.a1 | $(C_2\times D_{28}):C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.h1.b1 | $(C_2\times D_{28}):C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.i1.a1 | $C_2\times D_4\times F_7$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.j1.a1 | $(C_2\times D_{28}):C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.k1.a1 | $D_{28}:C_{12}$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.l1.a1 | $(C_2\times D_{28}):C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.m1.a1 | $C_2\times D_4\times F_7$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.m1.b1 | $C_2\times D_4\times F_7$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.n1.a1 | $(D_4\times C_{14}):C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.n1.b1 | $(D_4\times C_{14}):C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.o1.a1 | $(D_4\times C_{14}):C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.p1.a1 | $D_{28}:A_4$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.6.q1.a1 | $C_4\times D_{14}:C_6$ | $2^{5} \cdot 3 \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2 \cdot 3$ | $-$ | ||||||||||
4032.fk.7.a1.a1 | $\GL(2,\mathbb{Z}/4):C_6$ | $2^{6} \cdot 3^{2}$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $7$ | $-$ | |||||||||
4032.fk.8.a1.a1 | $C_7:C_6\times A_4$ | $2^{3} \cdot 3^{2} \cdot 7$ | ✓ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $C_2^3$ | $2^{3}$ | ✓ | |||||||
4032.fk.8.b1.a1 | $A_4:F_7$ | $2^{3} \cdot 3^{2} \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $D_4$ | $2^{3}$ | |||||||||
4032.fk.8.b1.b1 | $A_4:F_7$ | $2^{3} \cdot 3^{2} \cdot 7$ | ✓ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $D_4$ | $2^{3}$ | |||||||||
4032.fk.8.c1.a1 | $D_6\times F_7$ | $2^{3} \cdot 3^{2} \cdot 7$ | $C_{28}:(C_6\times S_4)$ | $2^{6} \cdot 3^{2} \cdot 7$ | $2^{3}$ | $-$ |