Properties

Label 4032.fk.4.e1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_7\times A_4):C_{12}$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $b^{3}c^{73}e, de, c^{42}de, c^{28}de, b^{2}, e, c^{12}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{28}:(C_6\times S_4)$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{14}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times S_4\times F_7$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times S_4\times F_7$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{28}:(C_6\times S_4)$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$(C_{14}\times S_4):C_6$$(C_{14}\times S_4):C_6$$C_4\times A_4:F_7$
Maximal under-subgroups:$C_7:C_6\times A_4$$C_{14}.S_4$$C_2^3.F_7$$C_{21}:C_{12}$$A_4:C_{12}$

Other information

Möbius function$2$
Projective image$C_2\times S_4\times F_7$