Properties

Label 4032.fk.6.b1.a1
Order $ 2^{5} \cdot 3 \cdot 7 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:\GL(2,\mathbb{Z}/4)$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a, de, c^{42}, c^{28}d, b^{3}c^{73}e, e, c^{12}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_{28}:(C_6\times S_4)$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{14}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times S_4\times F_7$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times S_4\times F_7$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times S_4\times F_7$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{28}:(C_6\times S_4)$
Complements:$C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$
Minimal over-subgroups:$(C_{14}\times S_4):C_6$$D_{28}:S_4$
Maximal under-subgroups:$C_{14}\times S_4$$A_4\times D_{14}$$C_{14}.S_4$$D_{14}:D_4$$C_{21}:D_4$$\GL(2,\mathbb{Z}/4)$
Autjugate subgroups:4032.fk.6.b1.b1

Other information

Möbius function$1$
Projective image$C_2\times S_4\times F_7$