Subgroup ($H$) information
Description: | $C_7:\GL(2,\mathbb{Z}/4)$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$a, de, c^{42}, c^{28}d, b^{3}c^{73}e, e, c^{12}$
|
Derived length: | $3$ |
The subgroup is normal, a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_{28}:(C_6\times S_4)$ |
Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_{14}\times A_4).C_6.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2^2\times S_4\times F_7$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
$\operatorname{res}(S)$ | $C_2^2\times S_4\times F_7$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $C_2\times S_4\times F_7$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
Related subgroups
Other information
Möbius function | $1$ |
Projective image | $C_2\times S_4\times F_7$ |