Subgroup ($H$) information
Description: | $(C_2\times D_{28}):C_6$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$a, d, c^{21}, b^{2}, b^{3}e, c^{12}, c^{42}$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
Description: | $C_{28}:(C_6\times S_4)$ |
Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_{14}\times A_4).C_6.C_2^4$ |
$\operatorname{Aut}(H)$ | $F_7\times C_2^5:D_4$, of order \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \) |
$\operatorname{res}(S)$ | $D_4\times C_2^3\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $0$ |
Projective image | $C_2\times S_4\times F_7$ |