Subgroup ($H$) information
Description: | $C_7:C_{12}$ |
Order: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$c^{21}, c^{42}, c^{12}, b^{2}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Ambient group ($G$) information
Description: | $C_{28}:(C_6\times S_4)$ |
Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2\times S_4$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_{14}\times A_4).C_6.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$W$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
Möbius function | $24$ |
Projective image | $C_2\times S_4\times F_7$ |