This isogeny class has the smallest prime conductor of any isogeny class of abelian surface, as proved by Brumer and Kramer in [10.1090/S0002-9947-2013-05909-0].
Genus 2 curves in isogeny class 277.a
Label | Equation |
---|---|
277.a.277.1 | \(y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x\) |
277.a.277.2 | \(y^2 + y = x^5 - 9x^4 + 14x^3 - 19x^2 + 11x - 6\) |
L-function data
Analytic rank: | \(0\) | ||||||||||||||||||||||||
Mordell-Weil rank: | \(0\) | ||||||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $\mathrm{USp}(4)$
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.