This is the first proven instance of the paramodular conjecture for an abelian surface $A$ with trivial geometric endomorphism ring (meaning $\End(A_{\overline{\mathbb{Q}}})=\mathbb{Z}$); see [arXiv:1805.10873].
Minimal equation
$y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x$
Invariants
| \( N \) | = | \( 277 \) | = | \( 277 \) | magma: Conductor(LSeries(C)); Factorization($1);
|
| \( \Delta \) | = | \(277\) | = | \( 277 \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | = | \(-256\) | = | \( -1 \cdot 2^{8} \) |
| \( I_4 \) | = | \(5632\) | = | \( 2^{9} \cdot 11 \) |
| \( I_6 \) | = | \(-611328\) | = | \( -1 \cdot 2^{10} \cdot 3 \cdot 199 \) |
| \( I_{10} \) | = | \(1134592\) | = | \( 2^{12} \cdot 277 \) |
| \( J_2 \) | = | \(-32\) | = | \( -1 \cdot 2^{5} \) |
| \( J_4 \) | = | \(-16\) | = | \( -1 \cdot 2^{4} \) |
| \( J_6 \) | = | \(464\) | = | \( 2^{4} \cdot 29 \) |
| \( J_8 \) | = | \(-3776\) | = | \( -1 \cdot 2^{6} \cdot 59 \) |
| \( J_{10} \) | = | \(277\) | = | \( 277 \) |
| \( g_1 \) | = | \(-33554432/277\) | ||
| \( g_2 \) | = | \(524288/277\) | ||
| \( g_3 \) | = | \(475136/277\) |
Automorphism group
|
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X)\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | |
|
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | |
Rational points
This curve is locally solvable everywhere.
All rational points: (-1 : 0 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -1 : 0), (1 : 0 : 0)
Number of rational Weierstrass points: \(1\)
Invariants of the Jacobian:
Analytic rank: \(0\)
2-Selmer rank: \(0\)
Order of Ш*: square
Regulator: 1.0
Real period: 32.205748623977585285035922248
Tamagawa numbers: 1 (p = 277)
Torsion: \(\Z/{15}\Z\)
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition
Simple over \(\overline{\Q}\)
Endomorphisms
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).