Properties

Label 277.a.277.2
Conductor 277
Discriminant 277
Mordell-Weil group \(\Z/{5}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^5 - 9x^4 + 14x^3 - 19x^2 + 11x - 6$ (homogenize, simplify)
$y^2 + z^3y = x^5z - 9x^4z^2 + 14x^3z^3 - 19x^2z^4 + 11xz^5 - 6z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 - 36x^4 + 56x^3 - 76x^2 + 44x - 23$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-6, 11, -19, 14, -9, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-6, 11, -19, 14, -9, 1], R![1]);
 
sage: X = HyperellipticCurve(R([-23, 44, -76, 56, -36, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(277\) \(=\) \( 277 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(277\) \(=\) \( 277 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(-17920\) \(=\)  \( - 2^{9} \cdot 5 \cdot 7 \)
\( I_4 \)  \(=\) \(21928192\) \(=\)  \( 2^{8} \cdot 11 \cdot 13 \cdot 599 \)
\( I_6 \)  \(=\) \(-96756463616\) \(=\)  \( - 2^{11} \cdot 337 \cdot 140191 \)
\( I_{10} \)  \(=\) \(1134592\) \(=\)  \( 2^{12} \cdot 277 \)
\( J_2 \)  \(=\) \(-2240\) \(=\)  \( - 2^{6} \cdot 5 \cdot 7 \)
\( J_4 \)  \(=\) \(-19352\) \(=\)  \( - 2^{3} \cdot 41 \cdot 59 \)
\( J_6 \)  \(=\) \(-164384\) \(=\)  \( - 2^{5} \cdot 11 \cdot 467 \)
\( J_8 \)  \(=\) \(-1569936\) \(=\)  \( - 2^{4} \cdot 3 \cdot 32707 \)
\( J_{10} \)  \(=\) \(277\) \(=\)  \( 277 \)
\( g_1 \)  \(=\) \(-56394933862400000/277\)
\( g_2 \)  \(=\) \(217505333248000/277\)
\( g_3 \)  \(=\) \(-824813158400/277\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0)\)

magma: [C![1,0,0]];
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{5}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(5\)

2-torsion field: 5.1.4432.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 3.578416 \)
Tamagawa product: \( 1 \)
Torsion order:\( 5 \)
Leading coefficient: \( 0.143136 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(277\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 8 T + 277 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).