Learn more

Refine search


Results (5 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
17689.a.17689.1 17689.a \( 7^{2} \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[580,11305,1902565,2264192]$ $[145,405,-395,-55325,17689]$ $[\frac{64097340625}{17689},\frac{1234693125}{17689},-\frac{8304875}{17689}]$ $y^2 + (x^2 + x)y = x^5 - 4x^4 + 2x^3 + x^2 - x$
17689.b.17689.1 17689.b \( 7^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[580,11305,1902565,2264192]$ $[145,405,-395,-55325,17689]$ $[\frac{64097340625}{17689},\frac{1234693125}{17689},-\frac{8304875}{17689}]$ $y^2 + (x^3 + x + 1)y = -3x^4 - 3x^3 + x^2 + x$
17689.c.17689.1 17689.c \( 7^{2} \cdot 19^{2} \) $2$ $\mathsf{trivial}$ \(\mathsf{RM}\) $[92,7225,158147,-2264192]$ $[23,-279,-245,-20869,-17689]$ $[-\frac{6436343}{17689},\frac{3394593}{17689},\frac{2645}{361}]$ $y^2 + (x^3 + x + 1)y = 2x^5 + 2x^4 + x^3 + x^2$
17689.d.866761.1 17689.d \( 7^{2} \cdot 19^{2} \) $2$ $\Z/9\Z$ \(\mathsf{RM}\) $[3196,1064809,806830683,-110945408]$ $[799,-17767,-178217,-114515418,-866761]$ $[-\frac{325637113603999}{866761},\frac{9062633983033}{866761},\frac{113773911017}{866761}]$ $y^2 + (x^3 + x^2 + 1)y = 2x^4 - 2x^2 - 7x + 5$
17689.e.866761.1 17689.e \( 7^{2} \cdot 19^{2} \) $0$ $\Z/5\Z$ \(\mathsf{RM}\) $[82660,1,-22227071,110945408]$ $[20665,17793426,20428150568,26385430667561,866761]$ $[\frac{3768574004844424665625}{866761},\frac{22431988071545220750}{123823},\frac{178034344310076200}{17689}]$ $y^2 + (x^3 + x + 1)y = -x^6 - x^5 + 7x^4 + 7x^3 - 28x^2 - 13x + 34$
  displayed columns for results