Properties

Label 17689.d.866761.1
Conductor $17689$
Discriminant $866761$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z/{9}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{RM}\)
\(\End(J) \otimes \Q\) \(\mathsf{RM}\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + 1)y = 2x^4 - 2x^2 - 7x + 5$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + z^3)y = 2x^4z^2 - 2x^2z^4 - 7xz^5 + 5z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 + 9x^4 + 2x^3 - 6x^2 - 28x + 21$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([5, -7, -2, 0, 2]), R([1, 0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![5, -7, -2, 0, 2], R![1, 0, 1, 1]);
 
sage: X = HyperellipticCurve(R([21, -28, -6, 2, 9, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(17689\) \(=\) \( 7^{2} \cdot 19^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(866761\) \(=\) \( 7^{4} \cdot 19^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(3196\) \(=\)  \( 2^{2} \cdot 17 \cdot 47 \)
\( I_4 \)  \(=\) \(1064809\) \(=\)  \( 43 \cdot 24763 \)
\( I_6 \)  \(=\) \(806830683\) \(=\)  \( 3 \cdot 67 \cdot 257 \cdot 15619 \)
\( I_{10} \)  \(=\) \(-110945408\) \(=\)  \( - 2^{7} \cdot 7^{4} \cdot 19^{2} \)
\( J_2 \)  \(=\) \(799\) \(=\)  \( 17 \cdot 47 \)
\( J_4 \)  \(=\) \(-17767\) \(=\)  \( - 109 \cdot 163 \)
\( J_6 \)  \(=\) \(-178217\) \(=\)  \( - 13 \cdot 13709 \)
\( J_8 \)  \(=\) \(-114515418\) \(=\)  \( - 2 \cdot 3 \cdot 19085903 \)
\( J_{10} \)  \(=\) \(-866761\) \(=\)  \( - 7^{4} \cdot 19^{2} \)
\( g_1 \)  \(=\) \(-325637113603999/866761\)
\( g_2 \)  \(=\) \(9062633983033/866761\)
\( g_3 \)  \(=\) \(113773911017/866761\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : -1 : 1)\) \((1 : -2 : 1)\) \((-1 : 3 : 1)\) \((-1 : -4 : 1)\)
\((5 : 17 : 2)\) \((3 : -32 : 4)\) \((3 : -95 : 4)\) \((5 : -200 : 2)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : -1 : 1)\) \((1 : -2 : 1)\) \((-1 : 3 : 1)\) \((-1 : -4 : 1)\)
\((5 : 17 : 2)\) \((3 : -32 : 4)\) \((3 : -95 : 4)\) \((5 : -200 : 2)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\) \((-1 : -7 : 1)\) \((-1 : 7 : 1)\)
\((3 : -63 : 4)\) \((3 : 63 : 4)\) \((5 : -217 : 2)\) \((5 : 217 : 2)\)

magma: [C![-1,-4,1],C![-1,3,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![3,-95,4],C![3,-32,4],C![5,-200,2],C![5,17,2]]; // minimal model
 
magma: [C![-1,-7,1],C![-1,7,1],C![1,-1,1],C![1,-1,0],C![1,1,1],C![1,1,0],C![3,-63,4],C![3,63,4],C![5,-217,2],C![5,217,2]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z/{9}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((5 : -200 : 2) - (1 : 0 : 0)\) \(z (2x - 5z)\) \(=\) \(0,\) \(8y\) \(=\) \(-8x^3 - 75z^3\) \(2.254858\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.713662\) \(\infty\)
\((-1 : -4 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-4z^3\) \(0\) \(9\)
Generator $D_0$ Height Order
\((5 : -200 : 2) - (1 : 0 : 0)\) \(z (2x - 5z)\) \(=\) \(0,\) \(8y\) \(=\) \(-8x^3 - 75z^3\) \(2.254858\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.713662\) \(\infty\)
\((-1 : -4 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-4z^3\) \(0\) \(9\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(z (2x - 5z)\) \(=\) \(0,\) \(8y\) \(=\) \(-15x^3 + x^2z - 149z^3\) \(2.254858\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + z^3\) \(0.713662\) \(\infty\)
\((-1 : -7 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z - 7z^3\) \(0\) \(9\)

2-torsion field: 5.1.1132096.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 1.596240 \)
Real period: \( 11.23539 \)
Tamagawa product: \( 3 \)
Torsion order:\( 9 \)
Leading coefficient: \( 0.664236 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(7\) \(2\) \(4\) \(3\) \(( 1 - T )^{2}\)
\(19\) \(2\) \(2\) \(1\) \(( 1 - T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.12.2 no
\(3\) 3.720.4 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{13}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{13}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);