Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + x + 1)y = -x^6 - x^5 + 7x^4 + 7x^3 - 28x^2 - 13x + 34$ | (homogenize, simplify) |
$y^2 + (x^3 + xz^2 + z^3)y = -x^6 - x^5z + 7x^4z^2 + 7x^3z^3 - 28x^2z^4 - 13xz^5 + 34z^6$ | (dehomogenize, simplify) |
$y^2 = -3x^6 - 4x^5 + 30x^4 + 30x^3 - 111x^2 - 50x + 137$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(17689\) | \(=\) | \( 7^{2} \cdot 19^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(866761\) | \(=\) | \( 7^{4} \cdot 19^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(82660\) | \(=\) | \( 2^{2} \cdot 5 \cdot 4133 \) |
\( I_4 \) | \(=\) | \(1\) | \(=\) | \( 1 \) |
\( I_6 \) | \(=\) | \(-22227071\) | \(=\) | \( - 389 \cdot 57139 \) |
\( I_{10} \) | \(=\) | \(110945408\) | \(=\) | \( 2^{7} \cdot 7^{4} \cdot 19^{2} \) |
\( J_2 \) | \(=\) | \(20665\) | \(=\) | \( 5 \cdot 4133 \) |
\( J_4 \) | \(=\) | \(17793426\) | \(=\) | \( 2 \cdot 3 \cdot 7 \cdot 41 \cdot 10333 \) |
\( J_6 \) | \(=\) | \(20428150568\) | \(=\) | \( 2^{3} \cdot 7^{2} \cdot 83 \cdot 139 \cdot 4517 \) |
\( J_8 \) | \(=\) | \(26385430667561\) | \(=\) | \( 7^{2} \cdot 47 \cdot 1129 \cdot 10147903 \) |
\( J_{10} \) | \(=\) | \(866761\) | \(=\) | \( 7^{4} \cdot 19^{2} \) |
\( g_1 \) | \(=\) | \(3768574004844424665625/866761\) | ||
\( g_2 \) | \(=\) | \(22431988071545220750/123823\) | ||
\( g_3 \) | \(=\) | \(178034344310076200/17689\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
This curve has no rational points.
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{5}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(x^2 - xz - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - 5z^3\) | \(0\) | \(5\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(x^2 - xz - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - 5z^3\) | \(0\) | \(5\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(x^2 - xz - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + 3xz^2 - 9z^3\) | \(0\) | \(5\) |
2-torsion field: 5.1.1132096.2
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 1 \) |
Real period: | \( 2.783151 \) |
Tamagawa product: | \( 5 \) |
Torsion order: | \( 5 \) |
Leading coefficient: | \( 2.226521 \) |
Analytic order of Ш: | \( 4 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(7\) | \(2\) | \(4\) | \(5\) | \(1\) | \(( 1 - T )^{2}\) | yes | |
\(19\) | \(2\) | \(2\) | \(1\) | \(1\) | \(( 1 + T )^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.12.2 | no |
\(3\) | 3.72.2 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{5}}{2}]\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{5}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).