Learn more

Refine search


Results (15 matches)

  displayed columns for results
Label Name Order Parity Solvable Subfields Low Degree Siblings
18T152 $C_6^2:D_6$ $432$ $-1$ $S_3$, $S_4$, $C_3^2 : D_{6} $ 18T153, 18T154, 18T155, 36T608, 36T609, 36T611, 36T612, 36T623, 36T624, 36T627, 36T628, 36T687, 36T688, 36T701
18T153 $C_6^2:D_6$ $432$ $-1$ $S_3$, $S_4\times C_2$, $C_3^2 : D_{6} $ 18T152, 18T154, 18T155, 36T608, 36T609, 36T611, 36T612, 36T623, 36T624, 36T627, 36T628, 36T687, 36T688, 36T701
18T154 $C_6^2:D_6$ $432$ $1$ $S_3$, $S_4$, $C_3^2 : D_{6} $ 18T152, 18T153, 18T155, 36T608, 36T609, 36T611, 36T612, 36T623, 36T624, 36T627, 36T628, 36T687, 36T688, 36T701
18T155 $C_6^2:D_6$ $432$ $-1$ $S_3$, $S_4\times C_2$, $C_3^2 : D_{6} $ 18T152, 18T153, 18T154, 36T608, 36T609, 36T611, 36T612, 36T623, 36T624, 36T627, 36T628, 36T687, 36T688, 36T701
36T608 $C_6^2:D_6$ $432$ $1$ $C_2$, $S_3$, $S_3$, $S_4$, $S_4$, $C_3^2 : D_{6} $, $S_4$, $C_3^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T609, 36T611, 36T612, 36T623, 36T624, 36T627, 36T628, 36T687, 36T688, 36T701
36T609 $C_6^2:D_6$ $432$ $1$ $C_2$, $S_3$, $S_3$, $S_4\times C_2$ x 2, $C_3^2 : D_{6} $, $C_2\times S_4$, $C_3^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T611, 36T612, 36T623, 36T624, 36T627, 36T628, 36T687, 36T688, 36T701
36T611 $C_6^2:D_6$ $432$ $1$ $C_2$, $S_3$, $S_3$, $S_4\times C_2$ x 2, $C_3^2 : D_{6} $, $C_2\times S_4$, $C_3^2:D_6$, $C_6^2:D_6$, $C_6^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T609, 36T612, 36T623, 36T624, 36T627, 36T628, 36T687, 36T688, 36T701
36T612 $C_6^2:D_6$ $432$ $1$ $C_2$, $S_3$, $S_3$, $S_4$, $S_4$, $C_3^2 : D_{6} $, $S_4$, $C_3^2:D_6$, $C_6^2:D_6$, $C_6^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T609, 36T611, 36T623, 36T624, 36T627, 36T628, 36T687, 36T688, 36T701
36T623 $C_6^2:D_6$ $432$ $1$ $C_2$, $S_3$, $D_{6}$, $S_4$, $S_4\times C_2$, $C_3^2 : D_{6} $, $C_2 \times S_4$, $C_3^2:D_6$, $C_6^2:D_6$, $C_6^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T609, 36T611, 36T612, 36T624, 36T627, 36T628, 36T687, 36T688, 36T701
36T624 $C_6^2:D_6$ $432$ $1$ $C_2$, $S_3$, $D_{6}$, $S_4$, $S_4\times C_2$, $C_3^2 : D_{6} $, $C_2 \times S_4$, $C_3^2:D_6$, $C_6^2:D_6$, $C_6^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T609, 36T611, 36T612, 36T623, 36T627, 36T628, 36T687, 36T688, 36T701
36T627 $C_6^2:D_6$ $432$ $1$ $C_2$, $S_3$, $D_{6}$, $S_4$, $S_4\times C_2$, $C_3^2 : D_{6} $, $C_2 \times S_4$, $C_3^2:D_6$, $C_6^2:D_6$, $C_6^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T609, 36T611, 36T612, 36T623, 36T624, 36T628, 36T687, 36T688, 36T701
36T628 $C_6^2:D_6$ $432$ $1$ $C_2$, $S_3$, $D_{6}$, $S_4$, $S_4\times C_2$, $C_3^2 : D_{6} $, $C_2 \times S_4$, $C_3^2:D_6$, $C_6^2:D_6$, $C_6^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T609, 36T611, 36T612, 36T623, 36T624, 36T627, 36T687, 36T688, 36T701
36T687 $C_6^2:D_6$ $432$ $-1$ $S_3$, $S_4$, $S_4$, $C_3^2 : D_{6} $, $S_4$, $C_6^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T609, 36T611, 36T612, 36T623, 36T624, 36T627, 36T628, 36T688, 36T701
36T688 $C_6^2:D_6$ $432$ $-1$ $S_3$, $S_4$, $C_3^2 : D_{6} $, $C_2 \times S_4$, $C_6^2:D_6$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T609, 36T611, 36T612, 36T623, 36T624, 36T627, 36T628, 36T687, 36T701
36T701 $C_6^2:D_6$ $432$ $-1$ $S_3$, $S_4$, $C_3^2 : D_{6} $, $S_3\times S_4$ 18T152, 18T153, 18T154, 18T155, 36T608, 36T609, 36T611, 36T612, 36T623, 36T624, 36T627, 36T628, 36T687, 36T688
  displayed columns for results

Results are complete for degrees $\leq 23$.