Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $155$ | |
| Group : | $C_3:S_3:S_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (7,11,9)(8,12,10)(13,15,17)(14,16,18), (1,15,9)(2,16,10)(3,17,11)(4,18,12)(5,13,7)(6,14,8), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12), (1,9)(2,10)(3,7)(4,8)(5,11)(6,12)(13,17)(14,18), (1,4)(2,3)(5,6)(7,10)(8,9)(11,12)(13,18)(14,17)(15,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 24: $S_4$ 36: $S_3^2$ 48: $S_4\times C_2$ 108: $C_3^2 : D_{6} $ 144: 12T83 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4\times C_2$
Degree 9: $C_3^2 : D_{6} $
Low degree siblings
18T152, 18T153, 18T154Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 7, 9,11)( 8,10,12)(13,17,15)(14,18,16)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $6$ | $6$ | $( 7,10,11, 8, 9,12)(13,18,15,14,17,16)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $18$ | $4$ | $( 7,13, 8,14)( 9,15,10,16)(11,17,12,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $27$ | $2$ | $( 3, 5)( 4, 6)( 9,11)(10,12)(13,16)(14,15)(17,18)$ |
| $ 6, 6, 2, 2, 1, 1 $ | $36$ | $6$ | $( 3, 5)( 4, 6)( 7,13, 9,17,11,15)( 8,14,10,18,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $18$ | $2$ | $( 3, 5)( 4, 6)( 7,17)( 8,18)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $12$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 9,11)( 8,10,12)(13,18,15,14,17,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13)( 8,14)( 9,15)(10,16)(11,17)(12,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3, 6)( 4, 5)( 7, 8)( 9,12)(10,11)(13,16)(14,15)(17,18)$ |
| $ 12, 2, 2, 2 $ | $36$ | $12$ | $( 1, 2)( 3, 6)( 4, 5)( 7,13,10,18,11,15, 8,14, 9,17,12,16)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 6)( 4, 5)( 7,17, 8,18)( 9,15,10,16)(11,13,12,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,11)( 8,10,12)(13,15,17)(14,16,18)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,11, 8, 9,12)(13,16,17,14,15,18)$ |
| $ 12, 3, 3 $ | $36$ | $12$ | $( 1, 3, 5)( 2, 4, 6)( 7,13,12,18, 9,15, 8,14,11,17,10,16)$ |
| $ 6, 6, 6 $ | $36$ | $6$ | $( 1, 4, 5, 2, 3, 6)( 7,13,11,17, 9,15)( 8,14,12,18,10,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $48$ | $3$ | $( 1, 7,13)( 2, 8,14)( 3, 9,15)( 4,10,16)( 5,11,17)( 6,12,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $24$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3, 9,13)( 4,10,14)( 5,11,15)( 6,12,16)$ |
| $ 6, 6, 6 $ | $72$ | $6$ | $( 1, 7,13, 4,12,16)( 2, 8,14, 3,11,15)( 5, 9,17, 6,10,18)$ |
Group invariants
| Order: | $432=2^{4} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [432, 523] |
| Character table: |
2 4 4 3 3 3 4 2 3 2 3 4 2 3 3 3 2 2 . 1 1
3 3 2 2 2 1 . 1 1 2 1 1 1 1 3 2 1 1 2 2 1
1a 2a 3a 6a 4a 2b 6b 2c 6c 2d 2e 12a 4b 3b 6d 12b 6e 3c 3d 6f
2P 1a 1a 3a 3a 2a 1a 3a 1a 3a 1a 1a 6a 2a 3b 3b 6d 3b 3c 3d 3d
3P 1a 2a 1a 2a 4a 2b 2c 2c 2a 2d 2e 4b 4b 1a 2a 4a 2d 1a 1a 2e
5P 1a 2a 3a 6a 4a 2b 6b 2c 6c 2d 2e 12a 4b 3b 6d 12b 6e 3c 3d 6f
7P 1a 2a 3a 6a 4a 2b 6b 2c 6c 2d 2e 12a 4b 3b 6d 12b 6e 3c 3d 6f
11P 1a 2a 3a 6a 4a 2b 6b 2c 6c 2d 2e 12a 4b 3b 6d 12b 6e 3c 3d 6f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1
X.3 1 1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 1
X.4 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 1 1 1 -1
X.5 2 2 2 2 . -2 . . 2 . -2 . . 2 2 . . -1 -1 1
X.6 2 2 2 2 . 2 . . 2 . 2 . . 2 2 . . -1 -1 -1
X.7 2 2 -1 -1 . . 1 -2 -1 . . 1 -2 2 2 . . -1 2 .
X.8 2 2 -1 -1 . . -1 2 -1 . . -1 2 2 2 . . -1 2 .
X.9 3 -1 3 -1 -1 -1 1 1 -1 1 3 -1 -1 3 -1 -1 1 . . .
X.10 3 -1 3 -1 -1 1 -1 -1 -1 1 -3 1 1 3 -1 -1 1 . . .
X.11 3 -1 3 -1 1 -1 -1 -1 -1 -1 3 1 1 3 -1 1 -1 . . .
X.12 3 -1 3 -1 1 1 1 1 -1 -1 -3 -1 -1 3 -1 1 -1 . . .
X.13 4 4 -2 -2 . . . . -2 . . . . 4 4 . . 1 -2 .
X.14 6 6 . . -2 . . . . -2 . . . -3 -3 1 1 . . .
X.15 6 6 . . 2 . . . . 2 . . . -3 -3 -1 -1 . . .
X.16 6 -2 -3 1 . . -1 2 1 . . 1 -2 6 -2 . . . . .
X.17 6 -2 -3 1 . . 1 -2 1 . . -1 2 6 -2 . . . . .
X.18 6 -2 . 4 -2 . . . -2 2 . . . -3 1 1 -1 . . .
X.19 6 -2 . 4 2 . . . -2 -2 . . . -3 1 -1 1 . . .
X.20 12 -4 . -4 . . . . 2 . . . . -6 2 . . . . .
|