Label |
Name |
Order |
Parity |
Solvable |
Nil. class |
Conj. classes |
Subfields |
Low Degree Siblings |
18T347 |
$S_3\times C_3^3:A_4$ |
$1944$ |
$-1$ |
✓ |
$-1$ |
$39$ |
$C_3$, $A_4\times C_2$ |
24T4982 x 2, 24T4985, 27T399, 36T2770 x 2, 36T2771, 36T2844, 36T2973, 36T2974 x 2 |
24T4982 |
$S_3\times C_3^3:A_4$ |
$1944$ |
$1$ |
✓ |
$-1$ |
$39$ |
$C_2$, $A_4$, $A_4\times C_2$ |
18T347, 24T4982, 24T4985, 27T399, 36T2770 x 2, 36T2771, 36T2844, 36T2973, 36T2974 x 2 |
24T4985 |
$S_3\times C_3^3:A_4$ |
$1944$ |
$1$ |
✓ |
$-1$ |
$39$ |
$C_2$, $A_4$, $A_4\times C_2$ |
18T347, 24T4982 x 2, 27T399, 36T2770 x 2, 36T2771, 36T2844, 36T2973, 36T2974 x 2 |
27T399 |
$S_3\times C_3^3:A_4$ |
$1944$ |
$-1$ |
✓ |
$-1$ |
$39$ |
$C_3$, $S_3$, $S_3\times C_3$, $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ |
18T347, 24T4982 x 2, 24T4985, 36T2770 x 2, 36T2771, 36T2844, 36T2973, 36T2974 x 2 |
36T2770 |
$S_3\times C_3^3:A_4$ |
$1944$ |
$1$ |
✓ |
$-1$ |
$39$ |
$C_3$, $A_4$, $A_4\times C_2$, $A_4\times C_2$, $S_3\times C_3^3:A_4$ |
18T347, 24T4982 x 2, 24T4985, 27T399, 36T2770, 36T2771, 36T2844, 36T2973, 36T2974 x 2 |
36T2771 |
$S_3\times C_3^3:A_4$ |
$1944$ |
$1$ |
✓ |
$-1$ |
$39$ |
$C_2$, $C_3$, $C_6$, $A_4$, $A_4\times C_2$, $A_4 \times C_2$, $S_3\times C_3^3:A_4$ |
18T347, 24T4982 x 2, 24T4985, 27T399, 36T2770 x 2, 36T2844, 36T2973, 36T2974 x 2 |
36T2844 |
$S_3\times C_3^3:A_4$ |
$1944$ |
$1$ |
✓ |
$-1$ |
$39$ |
$C_3$, $A_4$, $A_4\times C_2$, $A_4\times C_2$ |
18T347, 24T4982 x 2, 24T4985, 27T399, 36T2770 x 2, 36T2771, 36T2973, 36T2974 x 2 |
36T2973 |
$S_3\times C_3^3:A_4$ |
$1944$ |
$1$ |
✓ |
$-1$ |
$39$ |
$S_3$, $A_4$, $S_3\times A_4$, $C_3^3:A_4$ |
18T347, 24T4982 x 2, 24T4985, 27T399, 36T2770 x 2, 36T2771, 36T2844, 36T2974 x 2 |
36T2974 |
$S_3\times C_3^3:A_4$ |
$1944$ |
$1$ |
✓ |
$-1$ |
$39$ |
$S_3$, $A_4$, $S_3\times A_4$, $C_3^3:A_4$ |
18T347, 24T4982 x 2, 24T4985, 27T399, 36T2770 x 2, 36T2771, 36T2844, 36T2973, 36T2974 |
Results are complete for degrees $\leq 23$.