Show commands: Magma
Group invariants
Abstract group: | $S_3\times C_3^3:A_4$ |
| |
Order: | $1944=2^{3} \cdot 3^{5}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $27$ |
| |
Transitive number $t$: | $399$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,6,2,4,3,5)(7,9,8)(10,15,11,13,12,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)$, $(1,7,16,25,13,22,4,10,19)(2,9,17,27,14,24,5,12,20,3,8,18,26,15,23,6,11,21)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $12$: $A_4$ $18$: $S_3\times C_3$ $24$: $A_4\times C_2$ $72$: 12T43 $324$: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ $648$: 18T199 Resolvents shown for degrees $\leq 47$
Subfields
Degree 9: $S_3\times C_3$, $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$
Low degree siblings
18T347, 24T4982 x 2, 24T4985, 36T2770 x 2, 36T2771, 36T2844, 36T2973, 36T2974 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{9},1^{9}$ | $3$ | $2$ | $9$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)$ |
2B | $2^{6},1^{15}$ | $27$ | $2$ | $6$ | $( 7,13)( 8,14)( 9,15)(16,19)(17,20)(18,21)$ |
2C | $2^{11},1^{5}$ | $81$ | $2$ | $11$ | $( 1, 2)( 4, 5)( 7,11)( 8,10)( 9,12)(13,14)(16,17)(19,23)(20,22)(21,24)(25,26)$ |
3A | $3^{9}$ | $2$ | $3$ | $18$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)$ |
3B1 | $3^{9}$ | $4$ | $3$ | $18$ | $( 1,25, 4)( 2,26, 5)( 3,27, 6)( 7,13,10)( 8,14,11)( 9,15,12)(16,19,22)(17,20,23)(18,21,24)$ |
3B-1 | $3^{9}$ | $4$ | $3$ | $18$ | $( 1, 4,25)( 2, 5,26)( 3, 6,27)( 7,10,13)( 8,11,14)( 9,12,15)(16,22,19)(17,23,20)(18,24,21)$ |
3C | $3^{3},1^{18}$ | $6$ | $3$ | $6$ | $(16,22,19)(17,23,20)(18,24,21)$ |
3D1 | $3^{9}$ | $8$ | $3$ | $18$ | $( 1, 5,27)( 2, 6,25)( 3, 4,26)( 7,11,15)( 8,12,13)( 9,10,14)(16,20,24)(17,21,22)(18,19,23)$ |
3D-1 | $3^{9}$ | $8$ | $3$ | $18$ | $( 1, 5,27)( 2, 6,25)( 3, 4,26)( 7,11,15)( 8,12,13)( 9,10,14)(16,23,21)(17,24,19)(18,22,20)$ |
3E | $3^{6},1^{9}$ | $12$ | $3$ | $12$ | $( 7,13,10)( 8,14,11)( 9,15,12)(16,22,19)(17,23,20)(18,24,21)$ |
3F | $3^{9}$ | $12$ | $3$ | $18$ | $( 1,27, 5)( 2,25, 6)( 3,26, 4)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)$ |
3G | $3^{9}$ | $24$ | $3$ | $18$ | $( 1, 2, 3)( 4, 5, 6)( 7,11,15)( 8,12,13)( 9,10,14)(16,20,24)(17,21,22)(18,19,23)(25,26,27)$ |
3H1 | $3^{9}$ | $36$ | $3$ | $18$ | $( 1,10,22)( 2,11,23)( 3,12,24)( 4,13,19)( 5,14,20)( 6,15,21)( 7,16,25)( 8,17,26)( 9,18,27)$ |
3H-1 | $3^{9}$ | $36$ | $3$ | $18$ | $( 1,22,10)( 2,23,11)( 3,24,12)( 4,19,13)( 5,20,14)( 6,21,15)( 7,25,16)( 8,26,17)( 9,27,18)$ |
3I1 | $3^{9}$ | $72$ | $3$ | $18$ | $( 1,18,14)( 2,16,15)( 3,17,13)( 4,21,11)( 5,19,12)( 6,20,10)( 7,27,23)( 8,25,24)( 9,26,22)$ |
3I-1 | $3^{9}$ | $72$ | $3$ | $18$ | $( 1,14,18)( 2,15,16)( 3,13,17)( 4,11,21)( 5,12,19)( 6,10,20)( 7,23,27)( 8,24,25)( 9,22,26)$ |
6A1 | $6^{3},3^{3}$ | $12$ | $6$ | $21$ | $( 1, 6,25, 3, 4,27)( 2, 5,26)( 7,12,13, 9,10,15)( 8,11,14)(16,24,19,18,22,21)(17,23,20)$ |
6A-1 | $6^{3},3^{3}$ | $12$ | $6$ | $21$ | $( 1,27, 4, 3,25, 6)( 2,26, 5)( 7,15,10, 9,13,12)( 8,14,11)(16,21,22,18,19,24)(17,20,23)$ |
6B | $6,3,2^{6},1^{6}$ | $18$ | $6$ | $13$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(16,19,22)(17,21,23,18,20,24)(26,27)$ |
6C | $6^{2},3^{2},2^{3},1^{3}$ | $36$ | $6$ | $17$ | $( 2, 3)( 5, 6)( 7,10,13)( 8,12,14, 9,11,15)(16,19,22)(17,21,23,18,20,24)(26,27)$ |
6D | $6^{2},3^{5}$ | $54$ | $6$ | $20$ | $( 1, 3, 2)( 4, 6, 5)( 7,15, 8,13, 9,14)(10,12,11)(16,21,17,19,18,20)(22,24,23)(25,27,26)$ |
6E | $3^{3},2^{6},1^{6}$ | $54$ | $6$ | $12$ | $( 1,25, 4)( 2,26, 5)( 3,27, 6)(10,13)(11,14)(12,15)(16,22)(17,23)(18,24)$ |
6F | $6^{2},3^{5}$ | $108$ | $6$ | $20$ | $( 1, 5,27)( 2, 6,25)( 3, 4,26)( 7,14, 9,13, 8,15)(10,11,12)(16,17,18)(19,23,21,22,20,24)$ |
6G1 | $6^{3},3^{3}$ | $108$ | $6$ | $21$ | $( 1,24,10, 3,22,12)( 2,23,11)( 4,21,13, 6,19,15)( 5,20,14)( 7,27,16, 9,25,18)( 8,26,17)$ |
6G-1 | $6^{3},3^{3}$ | $108$ | $6$ | $21$ | $( 1,12,22, 3,10,24)( 2,11,23)( 4,15,19, 6,13,21)( 5,14,20)( 7,18,25, 9,16,27)( 8,17,26)$ |
6H | $6,3,2^{8},1^{2}$ | $162$ | $6$ | $15$ | $( 1, 5,25, 2, 4,26)( 3, 6,27)( 7,11)( 8,10)( 9,12)(13,14)(16,17)(19,23)(20,22)(21,24)$ |
9A1 | $9^{3}$ | $36$ | $9$ | $24$ | $( 1,10,19,25, 7,22, 4,13,16)( 2,11,20,26, 8,23, 5,14,17)( 3,12,21,27, 9,24, 6,15,18)$ |
9A-1 | $9^{3}$ | $36$ | $9$ | $24$ | $( 1,16,13, 4,22, 7,25,19,10)( 2,17,14, 5,23, 8,26,20,11)( 3,18,15, 6,24, 9,27,21,12)$ |
9B1 | $9^{3}$ | $36$ | $9$ | $24$ | $( 1,19, 7,25,16,10, 4,22,13)( 2,20, 8,26,17,11, 5,23,14)( 3,21, 9,27,18,12, 6,24,15)$ |
9B-1 | $9^{3}$ | $36$ | $9$ | $24$ | $( 1,13,22, 4,10,16,25, 7,19)( 2,14,23, 5,11,17,26, 8,20)( 3,15,24, 6,12,18,27, 9,21)$ |
9C1 | $9^{3}$ | $72$ | $9$ | $24$ | $( 1,24,11,25,18, 8, 4,21,14)( 2,22,12,26,16, 9, 5,19,15)( 3,23,10,27,17, 7, 6,20,13)$ |
9C-1 | $9^{3}$ | $72$ | $9$ | $24$ | $( 1,14,21, 4, 8,18,25,11,24)( 2,15,19, 5, 9,16,26,12,22)( 3,13,20, 6, 7,17,27,10,23)$ |
9D1 | $9^{3}$ | $72$ | $9$ | $24$ | $( 1,18,11, 4,21, 8,25,24,14)( 2,16,12, 5,19, 9,26,22,15)( 3,17,10, 6,20, 7,27,23,13)$ |
9D-1 | $9^{3}$ | $72$ | $9$ | $24$ | $( 1,14,24,25, 8,21, 4,11,18)( 2,15,22,26, 9,19, 5,12,16)( 3,13,23,27, 7,20, 6,10,17)$ |
18A1 | $18,9$ | $108$ | $18$ | $25$ | $( 1,24,10, 6,19,15,25,18, 7, 3,22,12, 4,21,13,27,16, 9)( 2,23,11, 5,20,14,26,17, 8)$ |
18A-1 | $18,9$ | $108$ | $18$ | $25$ | $( 1, 9,16,27,13,21, 4,12,22, 3, 7,18,25,15,19, 6,10,24)( 2, 8,17,26,14,20, 5,11,23)$ |
18B1 | $18,9$ | $108$ | $18$ | $25$ | $( 1,11,19, 5, 7,23,25,14,16, 2,10,20, 4, 8,22,26,13,17)( 3,12,21, 6, 9,24,27,15,18)$ |
18B-1 | $18,9$ | $108$ | $18$ | $25$ | $( 1,17,13,26,22, 8, 4,20,10, 2,16,14,25,23, 7, 5,19,11)( 3,18,15,27,24, 9, 6,21,12)$ |
Malle's constant $a(G)$: $1/6$
Character table
39 x 39 character table
Regular extensions
Data not computed