Show commands: Magma
Group invariants
Abstract group: | $A_6$ |
| |
Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $6$ |
| |
Transitive number $t$: | $15$ |
| |
CHM label: | $A6$ | ||
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2,3)$, $(1,2)(3,4,5,6)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Low degree siblings
6T15, 10T26, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304, 45T49Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{6}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{2}$ | $45$ | $2$ | $2$ | $(1,4)(3,5)$ |
3A | $3,1^{3}$ | $40$ | $3$ | $2$ | $(2,5,4)$ |
3B | $3^{2}$ | $40$ | $3$ | $4$ | $(1,6,2)(3,4,5)$ |
4A | $4,2$ | $90$ | $4$ | $4$ | $(1,5,4,3)(2,6)$ |
5A1 | $5,1$ | $72$ | $5$ | $4$ | $(1,4,6,2,3)$ |
5A2 | $5,1$ | $72$ | $5$ | $4$ | $(1,6,3,4,2)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 3A | 3B | 4A | 5A1 | 5A2 | ||
Size | 1 | 45 | 40 | 40 | 90 | 72 | 72 | |
2 P | 1A | 1A | 3A | 3B | 2A | 5A2 | 5A1 | |
3 P | 1A | 2A | 1A | 1A | 4A | 5A2 | 5A1 | |
5 P | 1A | 2A | 3A | 3B | 4A | 1A | 1A | |
Type | ||||||||
360.118.1a | R | |||||||
360.118.5a | R | |||||||
360.118.5b | R | |||||||
360.118.8a1 | R | |||||||
360.118.8a2 | R | |||||||
360.118.9a | R | |||||||
360.118.10a | R |
Regular extensions
$f_{ 1 } =$ |
$x^{6} + 3 x^{5} + 15 x^{4} + t x^{3} + 12 x - 4$
|