Show commands:
Magma
magma: G := TransitiveGroup(6, 15);
Group action invariants
Degree $n$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $15$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $A_6$ | ||
CHM label: | $A6$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3), (1,2)(3,4,5,6) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Low degree siblings
6T15, 10T26, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304, 45T49Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{6}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{2}$ | $45$ | $2$ | $2$ | $(1,2)(3,4)$ |
3A | $3,1^{3}$ | $40$ | $3$ | $2$ | $(1,2,3)$ |
3B | $3^{2}$ | $40$ | $3$ | $4$ | $(1,2,3)(4,5,6)$ |
4A | $4,2$ | $90$ | $4$ | $4$ | $(1,2,3,4)(5,6)$ |
5A1 | $5,1$ | $72$ | $5$ | $4$ | $(1,3,4,5,2)$ |
5A2 | $5,1$ | $72$ | $5$ | $4$ | $(1,2,3,4,5)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 360.118 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 3B | 4A | 5A1 | 5A2 | ||
Size | 1 | 45 | 40 | 40 | 90 | 72 | 72 | |
2 P | 1A | 1A | 3A | 3B | 2A | 5A2 | 5A1 | |
3 P | 1A | 2A | 1A | 1A | 4A | 5A2 | 5A1 | |
5 P | 1A | 2A | 3A | 3B | 4A | 1A | 1A | |
Type | ||||||||
360.118.1a | R | |||||||
360.118.5a | R | |||||||
360.118.5b | R | |||||||
360.118.8a1 | R | |||||||
360.118.8a2 | R | |||||||
360.118.9a | R | |||||||
360.118.10a | R |
magma: CharacterTable(G);