Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $15$ | |
| Group : | $A_6$ | |
| CHM label : | $A6$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3), (1,2)(3,4,5,6) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Low degree siblings
6T15, 10T26, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304, 45T49Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1 $ | $40$ | $3$ | $(4,5,6)$ |
| $ 2, 2, 1, 1 $ | $45$ | $2$ | $(3,4)(5,6)$ |
| $ 5, 1 $ | $72$ | $5$ | $(2,3,4,5,6)$ |
| $ 5, 1 $ | $72$ | $5$ | $(2,3,4,6,5)$ |
| $ 4, 2 $ | $90$ | $4$ | $(1,2)(3,4,5,6)$ |
| $ 3, 3 $ | $40$ | $3$ | $(1,2,3)(4,5,6)$ |
Group invariants
| Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [360, 118] |
| Character table: |
2 3 . 3 . . 2 .
3 2 2 . . . . 2
5 1 . . 1 1 . .
1a 3a 2a 5a 5b 4a 3b
2P 1a 3a 1a 5b 5a 2a 3b
3P 1a 1a 2a 5b 5a 4a 1a
5P 1a 3a 2a 1a 1a 4a 3b
X.1 1 1 1 1 1 1 1
X.2 5 2 1 . . -1 -1
X.3 5 -1 1 . . -1 2
X.4 8 -1 . A *A . -1
X.5 8 -1 . *A A . -1
X.6 9 . 1 -1 -1 1 .
X.7 10 1 -2 . . . 1
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|