Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $14$ | |
| Group : | $\PGL(2,5)$ | |
| CHM label : | $L(6):2 = PGL(2,5) = S_{5}(6)$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,4)(5,6), (1,2,3,4,6) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Low degree siblings
5T5, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 1, 1 $ | $30$ | $4$ | $(3,4,6,5)$ |
| $ 2, 2, 1, 1 $ | $15$ | $2$ | $(3,6)(4,5)$ |
| $ 5, 1 $ | $24$ | $5$ | $(2,3,5,4,6)$ |
| $ 2, 2, 2 $ | $10$ | $2$ | $(1,2)(3,4)(5,6)$ |
| $ 3, 3 $ | $20$ | $3$ | $(1,2,3)(4,5,6)$ |
| $ 6 $ | $20$ | $6$ | $(1,2,3,6,5,4)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [120, 34] |
| Character table: |
2 3 2 3 . 2 1 1
3 1 . . . 1 1 1
5 1 . . 1 . . .
1a 4a 2a 5a 2b 3a 6a
2P 1a 2a 1a 5a 1a 3a 3a
3P 1a 4a 2a 5a 2b 1a 2b
5P 1a 4a 2a 1a 2b 3a 6a
X.1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 -1
X.3 4 . . -1 -2 1 1
X.4 4 . . -1 2 1 -1
X.5 5 -1 1 . 1 -1 1
X.6 5 1 1 . -1 -1 -1
X.7 6 . -2 1 . . .
|