Learn more

Refine search


Results (1-50 of 1011145 matches)

Next   There are too many results (1011145) to download.
Label Polynomial Discriminant Galois group Class group Regulator
6.0.1778112.1 x6 + 3x4 - 2x3 + 6x2 + 1 $-\,2^{6}\cdot 3^{4}\cdot 7^{3}$ $\PGL(2,5)$ (as 6T14) trivial $7.66963675212$
6.0.2177712.1 x6 - x5 - 4x2 + 8 $-\,2^{4}\cdot 3^{3}\cdot 71^{2}$ $\PGL(2,5)$ (as 6T14) trivial $17.6663598699$
6.2.2299968.1 x6 - 2x5 - x4 + 4x3 - 4x2 + 4x + 1 $2^{6}\cdot 3^{3}\cdot 11^{3}$ $\PGL(2,5)$ (as 6T14) trivial $8.94858785913$
6.0.2611467.1 x6 - 3x5 + 7x4 - 6x3 + 6x2 - 7x + 5 $-\,3^{3}\cdot 311^{2}$ $\PGL(2,5)$ (as 6T14) trivial $8.73416086387$
6.0.2725888.1 x6 - x5 + 2x4 - 4x3 + 4x2 + 4x + 8 $-\,2^{11}\cdot 11^{3}$ $\PGL(2,5)$ (as 6T14) trivial $27.7367899009$
6.2.2725888.5 x6 - x5 - x4 + 2x3 - 5x2 - x - 3 $2^{11}\cdot 11^{3}$ $\PGL(2,5)$ (as 6T14) trivial $18.6829042442$
6.2.3200000.1 x6 - 2x5 + 4x + 2 $2^{10}\cdot 5^{5}$ $\PGL(2,5)$ (as 6T14) trivial $15.5733986742$
6.0.3421872.4 x6 - 2x5 + 6x4 - 12x3 + 14x2 - 10x + 4 $-\,2^{4}\cdot 3^{3}\cdot 89^{2}$ $\PGL(2,5)$ (as 6T14) $[4]$ $5.3725526246$
6.0.3479787.1 x6 - 3x5 + 4x4 - 3x2 + 3x + 3 $-\,3^{3}\cdot 359^{2}$ $\PGL(2,5)$ (as 6T14) trivial $9.57099207339$
6.0.3786752.3 x6 - x5 + 3x4 - 4x3 + 2x2 - 6x + 10 $-\,2^{11}\cdot 43^{2}$ $\PGL(2,5)$ (as 6T14) trivial $14.013439558$
6.0.3895843.1 x6 - x5 + x4 - 2x3 + 2x2 - x + 3 $-\,7^{2}\cdot 43^{3}$ $\PGL(2,5)$ (as 6T14) trivial $8.75310751929$
6.2.5000000.1 x6 - 2x5 - 8x - 4 $2^{6}\cdot 5^{7}$ $\PGL(2,5)$ (as 6T14) trivial $22.9563447187$
6.2.5256144.1 x6 - x5 - 2x4 - 2x3 + x2 + 5x + 4 $2^{4}\cdot 3^{3}\cdot 23^{3}$ $\PGL(2,5)$ (as 6T14) trivial $38.3435411021$
6.0.5400000.3 x6 - 2x5 + 5x2 + 2x + 1 $-\,2^{6}\cdot 3^{3}\cdot 5^{5}$ $\PGL(2,5)$ (as 6T14) $[2]$ $4.93230060794$
6.0.5400000.4 x6 - 2x5 + 5x4 + 6x + 3 $-\,2^{6}\cdot 3^{3}\cdot 5^{5}$ $\PGL(2,5)$ (as 6T14) trivial $13.8203686028$
6.2.5778125.2 x6 - 5x2 - 6x - 5 $5^{5}\cdot 43^{2}$ $\PGL(2,5)$ (as 6T14) trivial $21.401504859$
6.0.5787963.1 x6 - x5 + 4x4 - 12x3 + 15x2 - 9x + 3 $-\,3^{3}\cdot 463^{2}$ $\PGL(2,5)$ (as 6T14) trivial $12.1291618824$
6.0.6154544.2 x6 - 2x5 + 5x4 - 2x3 + 6x2 + 12x + 4 $-\,2^{4}\cdot 11^{3}\cdot 17^{2}$ $\PGL(2,5)$ (as 6T14) trivial $34.7329016144$
6.0.6627103.2 x6 - 2x5 - 8x3 + 21x2 - 8x + 1 $-\,7^{3}\cdot 139^{2}$ $\PGL(2,5)$ (as 6T14) trivial $10.0973990726$
6.0.6750000.1 x6 - x5 + 5x2 + 3x + 2 $-\,2^{4}\cdot 3^{3}\cdot 5^{6}$ $\PGL(2,5)$ (as 6T14) trivial $42.3233145267$
6.0.7129088.4 x6 - 3x5 + 7x4 - 4x3 + 8x2 - 4x + 4 $-\,2^{11}\cdot 59^{2}$ $\PGL(2,5)$ (as 6T14) trivial $20.5428136872$
6.0.8108208.2 x6 - 3x5 + 4x4 - 2x + 2 $-\,2^{4}\cdot 3^{3}\cdot 137^{2}$ $\PGL(2,5)$ (as 6T14) trivial $44.1031162279$
6.0.9148592.2 x6 - x5 + 4x4 + x2 + 3x + 2 $-\,2^{4}\cdot 83^{3}$ $\PGL(2,5)$ (as 6T14) trivial $46.6823817044$
6.2.9483264.1 x6 - 2x5 + x4 - 4x3 + 7x2 - 2x - 5 $2^{10}\cdot 3^{3}\cdot 7^{3}$ $\PGL(2,5)$ (as 6T14) trivial $36.4613498789$
6.0.9590832.1 x6 - x5 + 4x4 + 4x3 + x2 + 3x + 10 $-\,2^{4}\cdot 3^{3}\cdot 149^{2}$ $\PGL(2,5)$ (as 6T14) $[4]$ $9.58735606627$
6.2.9800000.2 x6 - 10x3 - 4x + 5 $2^{6}\cdot 5^{5}\cdot 7^{2}$ $\PGL(2,5)$ (as 6T14) trivial $34.6257839335$
6.0.9834496.1 x6 - 2x5 + 3x4 - 4x3 + 5x2 - 6x + 7 $-\,2^{12}\cdot 7^{4}$ $\PGL(2,5)$ (as 6T14) trivial $31.6560004442$
6.0.10209375.1 x6 - 2x5 + 5x4 + 9x + 12 $-\,3^{3}\cdot 5^{5}\cdot 11^{2}$ $\PGL(2,5)$ (as 6T14) trivial $30.6381933629$
6.2.10368000.1 x6 - 2x5 + 4x4 - 4x3 + 2x2 - 4x - 6 $2^{10}\cdot 3^{4}\cdot 5^{3}$ $\PGL(2,5)$ (as 6T14) $[2]$ $21.9198018435$
6.0.10546875.1 x6 - 5x4 + 15x2 - 11x + 5 $-\,3^{3}\cdot 5^{8}$ $\PGL(2,5)$ (as 6T14) trivial $17.5548258232$
6.2.10731125.1 x6 - x5 + 2x4 + 4x3 - 3x2 - 3x + 1 $5^{3}\cdot 293^{2}$ $\PGL(2,5)$ (as 6T14) $[2]$ $6.81902608276$
6.0.10784448.3 x6 - 2x5 + 4x4 - 4x3 + 4x2 + 4x + 4 $-\,2^{6}\cdot 3^{3}\cdot 79^{2}$ $\PGL(2,5)$ (as 6T14) trivial $34.1944381174$
6.0.10916416.1 x6 - 2x5 + 2x4 + 7x2 + 1 $-\,2^{6}\cdot 7^{2}\cdot 59^{2}$ $\PGL(2,5)$ (as 6T14) $[4]$ $5.4020629411$
6.2.11366912.2 x6 - 2x5 + 7x4 - 10x3 + 12x2 - 8x + 1 $2^{9}\cdot 149^{2}$ $\PGL(2,5)$ (as 6T14) $[2]$ $11.2091815101$
6.0.12800000.1 x6 - 2x5 + 5x4 + 4x + 2 $-\,2^{12}\cdot 5^{5}$ $\PGL(2,5)$ (as 6T14) trivial $61.8109645217$
6.2.12869712.1 x6 - x5 - x3 + 4x2 + 3x - 9 $2^{4}\cdot 3^{3}\cdot 31^{3}$ $\PGL(2,5)$ (as 6T14) trivial $34.8170402258$
6.2.13203125.1 x6 - x5 - 4x - 1 $5^{7}\cdot 13^{2}$ $\PGL(2,5)$ (as 6T14) trivial $18.2488150839$
6.2.13530125.1 x6 - 2x5 + 3x4 - x3 + 2x2 + 3x - 1 $5^{3}\cdot 7^{2}\cdot 47^{2}$ $\PGL(2,5)$ (as 6T14) trivial $20.0167357786$
6.2.13530125.2 x6 - 3x4 - 2x3 + 11x2 - 7x + 1 $5^{3}\cdot 7^{2}\cdot 47^{2}$ $\PGL(2,5)$ (as 6T14) $[2]$ $8.49157891171$
6.0.13687488.1 x6 - x5 + x4 + x3 + x2 - x + 4 $-\,2^{6}\cdot 3^{3}\cdot 89^{2}$ $\PGL(2,5)$ (as 6T14) trivial $55.9028130089$
6.0.13841712.3 x6 - 2x5 + 8x4 - 12x3 + 12x2 - 10x + 4 $-\,2^{4}\cdot 3^{3}\cdot 179^{2}$ $\PGL(2,5)$ (as 6T14) $[4]$ $9.45065645161$
6.0.14625792.2 x6 - 2x5 + 5x4 - 12x3 + 15x2 - 18x + 15 $-\,2^{10}\cdot 3^{3}\cdot 23^{2}$ $\PGL(2,5)$ (as 6T14) trivial $39.4471392322$
6.0.14697207.1 x6 - x5 + 3x4 + 6x2 + 3 $-\,3^{4}\cdot 7^{3}\cdot 23^{2}$ $\PGL(2,5)$ (as 6T14) trivial $38.4305857854$
6.2.14792000.2 x6 - 3x4 - 8x3 - 9x2 - 8x - 4 $2^{6}\cdot 5^{3}\cdot 43^{2}$ $\PGL(2,5)$ (as 6T14) $[2]$ $20.0397950081$
6.2.15000633.1 x6 - 3x5 - 3x4 + 4x3 - 12x2 + 6x - 5 $3^{7}\cdot 19^{3}$ $\PGL(2,5)$ (as 6T14) trivial $48.9955672887$
6.0.15106608.2 x6 - 3x5 + 4x4 + 6x2 + 2x + 2 $-\,2^{4}\cdot 3^{3}\cdot 11^{2}\cdot 17^{2}$ $\PGL(2,5)$ (as 6T14) trivial $52.8636670977$
6.0.15268608.1 x6 - 2x5 + 2x4 + 3x2 - 18x + 18 $-\,2^{8}\cdot 3^{3}\cdot 47^{2}$ $\PGL(2,5)$ (as 6T14) trivial $35.9635639851$
6.0.16133283.3 x6 - x5 + 3x4 + 9x3 + 5x2 - 2x + 1 $-\,3^{3}\cdot 773^{2}$ $\PGL(2,5)$ (as 6T14) $[4]$ $8.60637589824$
6.2.16200000.1 x6 - 2x5 - 6x - 3 $2^{6}\cdot 3^{4}\cdot 5^{5}$ $\PGL(2,5)$ (as 6T14) trivial $77.61245252$
6.2.16200000.2 x6 - 2x5 + 5x4 - 5x2 + 8x - 1 $2^{6}\cdot 3^{4}\cdot 5^{5}$ $\PGL(2,5)$ (as 6T14) trivial $66.4566196514$
Next   There are too many results (1011145) to download.