Show commands: Magma
Group invariants
| Abstract group: | $C_3^{15}.(C_5\times A_4)$ |
| |
| Order: | $860934420=2^{2} \cdot 3^{16} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $45$ |
| |
| Transitive number $t$: | $4982$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43)$, $(1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $5$: $C_5$ $12$: $A_4$ $15$: $C_{15}$ $60$: 20T14 $324$: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ $1620$: 45T188 $31886460$: 45T3107 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 5: $C_5$
Degree 9: None
Degree 15: $C_{15}$
Low degree siblings
45T4982 x 15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed