Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid c^{6}=d^{3}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([19, -3, -5, -2, 2, -3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 57, 5378399940, 20368728272, 5426154066, 1100157268, 38645624943, 546693102, 1454023377, 212, 16743088804, 7875523, 802, 156239285, 54056544, 2779, 27233282166, 10372124725, 9620, 1424493, 35669095207, 122992346, 32877, 451504, 145783714148, 1417412187, 110854, 15153059, 12779445609, 14948922628, 4801727, 184746, 155408230, 190959149, 1218936, 609511, 183448811, 177292830, 3324289, 1994612, 90787332, 50379226591, 6482337, 78939229333, 15046433672, 48090723, 20942782, 18397838714, 25311317433, 73410352, 67315931, 11610070095, 27082952674, 577383605, 215410824, 207367065916, 74380885775, 739680390, 686621845, 109617019217, 74188726236, 6038149591, 2181033938, 106713296718, 50817933937, 6943450952, 6906607311]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.3, G.4, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "a3", "b", "c", "c2", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"]);
gap:G := PcGroupCode(12789796777509873865160113896420093556181012308136224711084131223259462535620852920588161176295142334344415632473955877537952779086939028811558028901097882826917813343855732133636619293203817852968474448984515642046435872334174307429453879964795430093360730235395416163439044526522072220510279587104079812053716472153768095383500950304698387232595215536259637188719388739611361035264092396861541903171819457505464425049259229484799587295651223679061494340379709237339663804824400246020995949876985030144670731694632286911730793434556540045917084079956112652292289931081635310757078420948364828494844223515027855520556310613440065487171503152447182165,860934420); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.8; g := G.9; h := G.10; i := G.11; j := G.12; k := G.13; l := G.14; m := G.15; n := G.16; o := G.17; p := G.18; q := G.19;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(12789796777509873865160113896420093556181012308136224711084131223259462535620852920588161176295142334344415632473955877537952779086939028811558028901097882826917813343855732133636619293203817852968474448984515642046435872334174307429453879964795430093360730235395416163439044526522072220510279587104079812053716472153768095383500950304698387232595215536259637188719388739611361035264092396861541903171819457505464425049259229484799587295651223679061494340379709237339663804824400246020995949876985030144670731694632286911730793434556540045917084079956112652292289931081635310757078420948364828494844223515027855520556310613440065487171503152447182165,860934420)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13; l = G.14; m = G.15; n = G.16; o = G.17; p = G.18; q = G.19;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(12789796777509873865160113896420093556181012308136224711084131223259462535620852920588161176295142334344415632473955877537952779086939028811558028901097882826917813343855732133636619293203817852968474448984515642046435872334174307429453879964795430093360730235395416163439044526522072220510279587104079812053716472153768095383500950304698387232595215536259637188719388739611361035264092396861541903171819457505464425049259229484799587295651223679061494340379709237339663804824400246020995949876985030144670731694632286911730793434556540045917084079956112652292289931081635310757078420948364828494844223515027855520556310613440065487171503152447182165,860934420)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13; l = G.14; m = G.15; n = G.16; o = G.17; p = G.18; q = G.19;
|
Permutation group: | Degree $45$
$\langle(1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 45 | (1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43), (1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28) >;
gap:G := Group( (1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43), (1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28) );
sage:G = PermutationGroup(['(1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43)', '(1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28)'])
|
Transitive group: |
45T4982 |
|
|
|
more information |
Direct product: |
not computed |
Semidirect product: |
not computed |
Trans. wreath product: |
not computed |
Possibly split product: |
$C_3^{15}$ . $(C_5\times A_4)$ |
$(C_3^{14}.D_6)$ . $C_{15}$ |
$(C_3^{15}.C_{10}.C_2)$ . $C_3$ |
$(C_3^{12}.C_5.C_3^3)$ . $A_4$ |
all 7 |
Elements of the group are displayed as permutations of degree 45.
The character tables for this group have not been computed.