Properties

Label 860934420.a
Order \( 2^{2} \cdot 3^{16} \cdot 5 \)
Exponent \( 2 \cdot 3^{2} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 3 \cdot 5 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{16} \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2^{8} \)
Perm deg. $45$
Trans deg. $45$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43), (1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28) >;
 
Copy content gap:G := Group( (1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43), (1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28) );
 
Copy content sage:G = PermutationGroup(['(1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43)', '(1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(12789796777509873865160113896420093556181012308136224711084131223259462535620852920588161176295142334344415632473955877537952779086939028811558028901097882826917813343855732133636619293203817852968474448984515642046435872334174307429453879964795430093360730235395416163439044526522072220510279587104079812053716472153768095383500950304698387232595215536259637188719388739611361035264092396861541903171819457505464425049259229484799587295651223679061494340379709237339663804824400246020995949876985030144670731694632286911730793434556540045917084079956112652292289931081635310757078420948364828494844223515027855520556310613440065487171503152447182165,860934420)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13; l = G.14; m = G.15; n = G.16; o = G.17; p = G.18; q = G.19;
 

Group information

Description:$C_3^{15}.(C_5\times A_4)$
Order: \(860934420\)\(\medspace = 2^{2} \cdot 3^{16} \cdot 5 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(220399211520\)\(\medspace = 2^{10} \cdot 3^{16} \cdot 5 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 2, $C_3$ x 16, $C_5$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Statistics about orders of elements in this group have not been computed.

Minimal presentations

Permutation degree:$45$
Transitive degree:$45$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid c^{6}=d^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, -3, -5, -2, 2, -3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 57, 5378399940, 20368728272, 5426154066, 1100157268, 38645624943, 546693102, 1454023377, 212, 16743088804, 7875523, 802, 156239285, 54056544, 2779, 27233282166, 10372124725, 9620, 1424493, 35669095207, 122992346, 32877, 451504, 145783714148, 1417412187, 110854, 15153059, 12779445609, 14948922628, 4801727, 184746, 155408230, 190959149, 1218936, 609511, 183448811, 177292830, 3324289, 1994612, 90787332, 50379226591, 6482337, 78939229333, 15046433672, 48090723, 20942782, 18397838714, 25311317433, 73410352, 67315931, 11610070095, 27082952674, 577383605, 215410824, 207367065916, 74380885775, 739680390, 686621845, 109617019217, 74188726236, 6038149591, 2181033938, 106713296718, 50817933937, 6943450952, 6906607311]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.3, G.4, G.6, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "a3", "b", "c", "c2", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"]);
 
Copy content gap:G := PcGroupCode(12789796777509873865160113896420093556181012308136224711084131223259462535620852920588161176295142334344415632473955877537952779086939028811558028901097882826917813343855732133636619293203817852968474448984515642046435872334174307429453879964795430093360730235395416163439044526522072220510279587104079812053716472153768095383500950304698387232595215536259637188719388739611361035264092396861541903171819457505464425049259229484799587295651223679061494340379709237339663804824400246020995949876985030144670731694632286911730793434556540045917084079956112652292289931081635310757078420948364828494844223515027855520556310613440065487171503152447182165,860934420); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.8; g := G.9; h := G.10; i := G.11; j := G.12; k := G.13; l := G.14; m := G.15; n := G.16; o := G.17; p := G.18; q := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(12789796777509873865160113896420093556181012308136224711084131223259462535620852920588161176295142334344415632473955877537952779086939028811558028901097882826917813343855732133636619293203817852968474448984515642046435872334174307429453879964795430093360730235395416163439044526522072220510279587104079812053716472153768095383500950304698387232595215536259637188719388739611361035264092396861541903171819457505464425049259229484799587295651223679061494340379709237339663804824400246020995949876985030144670731694632286911730793434556540045917084079956112652292289931081635310757078420948364828494844223515027855520556310613440065487171503152447182165,860934420)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13; l = G.14; m = G.15; n = G.16; o = G.17; p = G.18; q = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(12789796777509873865160113896420093556181012308136224711084131223259462535620852920588161176295142334344415632473955877537952779086939028811558028901097882826917813343855732133636619293203817852968474448984515642046435872334174307429453879964795430093360730235395416163439044526522072220510279587104079812053716472153768095383500950304698387232595215536259637188719388739611361035264092396861541903171819457505464425049259229484799587295651223679061494340379709237339663804824400246020995949876985030144670731694632286911730793434556540045917084079956112652292289931081635310757078420948364828494844223515027855520556310613440065487171503152447182165,860934420)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10; i = G.11; j = G.12; k = G.13; l = G.14; m = G.15; n = G.16; o = G.17; p = G.18; q = G.19;
 
Permutation group:Degree $45$ $\langle(1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43), (1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28) >;
 
Copy content gap:G := Group( (1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43), (1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28) );
 
Copy content sage:G = PermutationGroup(['(1,11,20,30,37,3,12,21,28,39,2,10,19,29,38)(4,15,23,32,41)(5,14,24,31,42,6,13,22,33,40)(7,18,25,36,45)(8,17,27,34,44,9,16,26,35,43)', '(1,31,16)(2,32,17)(3,33,18)(4,36,19,6,34,20,5,35,21)(7,38,24,8,39,22,9,37,23)(10,41,26)(11,40,27)(12,42,25)(13,45,30)(14,44,29)(15,43,28)'])
 
Transitive group: 45T4982 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_3^{15}$ . $(C_5\times A_4)$ $(C_3^{14}.D_6)$ . $C_{15}$ $(C_3^{15}.C_{10}.C_2)$ . $C_3$ $(C_3^{12}.C_5.C_3^3)$ . $A_4$ all 7

Elements of the group are displayed as permutations of degree 45.

Homology

Abelianization: $C_{15} \simeq C_{3} \times C_{5}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 10 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: not computed
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{15}.C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

The character tables for this group have not been computed.