Show commands: Magma
Group invariants
Abstract group: | $C_7^3:C_3^2:S_3$ |
| |
Order: | $18522=2 \cdot 3^{3} \cdot 7^{3}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $42$ |
| |
Transitive number $t$: | $719$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,31,20,39,23,33,28,42,17,36,22,30,25,38)(16,32,19,40,24,34,27,41,18,35,21,29,26,37)$, $(1,15,35,10,25,34,4,22,32,12,17,29,6,28,41,14,23,40,8,20,37)(2,16,36,9,26,33,3,21,31,11,18,30,5,27,42,13,24,39,7,19,38)$, $(1,32,17,4,37,23,6,29,15,8,35,22,10,41,28,12,34,20,14,40,25)(2,31,18,3,38,24,5,30,16,7,36,21,9,42,27,11,33,19,13,39,26)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ x 4 $18$: $C_3^2:C_2$ $54$: $(C_3^2:C_3):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $S_3$
Degree 7: None
Degree 14: None
Degree 21: 21T65
Low degree siblings
21T65 x 4, 42T719 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
51 x 51 character table
Regular extensions
Data not computed