Show commands: Magma
Group invariants
Abstract group: | $C_2\times C_7^3:S_4$ |
| |
Order: | $16464=2^{4} \cdot 3 \cdot 7^{3}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $42$ |
| |
Transitive number $t$: | $704$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,32,7,33,14,35,6,37,12,40,3,41,9,30)(2,31,8,34,13,36,5,38,11,39,4,42,10,29)(15,20,23,27,17,22,26)(16,19,24,28,18,21,25)$, $(1,19,4,26)(2,20,3,25)(5,17,14,28)(6,18,13,27)(7,24,11,22)(8,23,12,21)(9,16,10,15)(29,38)(30,37)(31,36)(32,35)(39,42)(40,41)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ $48$: $S_4\times C_2$ $8232$: 21T46 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4\times C_2$
Degree 7: None
Degree 14: None
Degree 21: 21T46
Low degree siblings
42T703 x 2, 42T704Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
140 x 140 character table
Regular extensions
Data not computed